Bottom Ash Pond Initial Safety Factor Assessment Cardinal Power Plant Brilliant, Ohio S&ME Project No. 7217-15-007A

Prepared for: American Electric Power 1 Riverside Plaza, 22nd Floor Columbus, Ohio 43215

> Prepared by: S&ME, Inc. 6190 Enterprise Court Dublin, OH 43016

December 30, 2015

Table of Contents

1.0	Introduction
1.1	Background1
1.2	Location and Geologic Conditions1
1.3	Previous Investigations
2.0	Scope of Work
3.0	Information Review and Site Visit
4.0	Field and Laboratory Work4
5.0	Subsurface Conditions
5.1	Stratigraphy5
5.2	Groundwater Conditions
5.3	Shear Strength and Permeability6
6.0	Safety Factor Assessment
6.1	Limit Equilibrium Analyses7
6.2	Liquefaction Potential of Embankment Soils8
6.3	Summary of Results9
7.0	Certification

List of Figures

0		
Figure 1-1	– Cardinal Plant	2

List of Tables

Table 5-1 – Shear Strength Parame	ters
Table 6-1 – Safety Factor Summary	

Appendices

Appendix I – 2009 & 2015 Site Investigation Figures
Appendix II – 2009 & 2015 Laboratory Testing Results
Appendix III – Shear Strength Parameter Justification
Appendix IV – Limit Equilibrium Analysis
Appendix V – 2009 Investigation Report Text
Appendix VI – Excerpt from 2010 Follow-Up Investigation Report

1.0 Introduction

1.1 Background

In April of 2015, the US EPA formally published national regulations for disposal of coal combustion residuals (CCR) from electric facilities. As part of the rule, the owner or operator of the CCR unit must obtain a certification from a qualified professional engineer stating that aspects of the CCR impoundments are in accordance with the rules. Based on our understanding of the Request for Fee Estimate received from AEP on April 29, 2015, AEP specifically requested P.E. certification to fulfill the requirements of 40 CFR § 257.73(e), *Periodic Safety Factor Assessments*. In the employment of BBC&M Engineering, Inc., the undersigned engineers conducted site investigations at the bottom ash pond in 2009 and 2010. Due to our familiarity with the site, S&ME was selected to perform the Safety Factor Assessment for this facility. S&ME understands that certification and/or documentation for other structural integrity criteria will be performed by AEP or other consultants.

1.2 Location and Geologic Conditions

The Cardinal Generating Plant is located along the Ohio River between Brilliant, Ohio and Tiltonsville, Ohio. The Bottom Ash Pond Complex is located along the west bank of the river just to the south of the Unit 3 area. The Bottom Ash Complex consists of two components: the Bottom Ash Pond and the Recirculation Pond. The Bottom Ash Pond is located north of the Recirculation Pond and they are separated by an earthen embankment. The crest elevation for all of the embankments has a minimum Elevation of 670 feet. The total length of the exterior embankment along the Ohio River is approximately 2,000 feet. Based on the current topography around the bottom ash complex, there is no discernable embankment on the north and south ends, thus the areas of the pond embankments are typically identified by referencing the eastern or western embankments. The bottom ash pond is operated at a constant Elevation of 664.5 feet. For comparison, the normal pool for this stretch of the Ohio River is EL. 644, as controlled by the Pike Island Dam Both ponds are isolated from exterior surface water inflow and during normal operation, all water that enters the pond is pumped back to the plant via the pump station located within the Recirculation Pond. The exception is during high rainfall events where the principal spillway may activate releasing water into the Ohio River through an NPDES outfall. The discharge is controlled by a 4-foot wide weir surveyed at Elevation 666.2. A review of the historical plans available for the bottom ash pond facility is included in Appendix V.

The original ground surface at the site is generally located between El. 645 and 655. Near surface soils generally consist of a layer of alluvium silt, clay and fine sand (organic in some locations) over glacial outwash deposits of variable thickness overlying the bedrock surface. The alluvium clays and silts were deposited in the backwater of the Ohio River, while the outwash materials typically consist of sand, gravel and silt deposits deposited during the last ice age. Based on geological literature, the glacial outwash extends to the bedrock surface, estimated to be roughly 50 to 60 feet below the natural ground surface at the pond. The upper most bedrock most likely consists of shale and/or sandstone belonging to the Conemaugh Group of Pennsylvanian Age.

Figure 1-1 – Cardinal Plant

1.3 **Previous Investigations**

In 2009, the undersigned engineers, when in the employment of BBC&M Engineering, Inc., completed a subsurface investigation and geotechnical assessment of the bottom ash pond embankments. The assessment, dated August 4, 2009, concluded that the embankment exhibited adequate factors of safety against slope failure under steady-state seepage and seismic loading conditions relative to typical US Army Corps of Engineers requirements. In 2010, BBC&M Engineering, Inc. performed additional geotechnical analyses and an hydrology and hydraulic evaluation of the pond. As part of this work, additional slope stability failure modes were examined, including the maximum surcharge pool and rapid drawdown load cases. A report documenting the additional geotechnical analysis, dated December 17, 2010, was submitted as an addendum to the 2009 report. The text from the 2009 report and an excerpt from the 2010 follow-up report is Appendices V and VI.

2.0 Scope of Work

In accordance with AEP's request, the following work items were performed by S&ME:

- 1. S&ME completed a cursory review of previously conducted assessment work performed by the undersigned engineers, as well as a limited number of construction documents made available by AEP.
- 2. S&ME visited the site along with personnel from AEP. The site visit was not a formal inspection, but rather served to document any significant modifications or changed conditions that may have taken place since the time of the previous investigations.
- 3. Upon completing Tasks 1 and 2, S&ME determined that there was insufficient information to certify the structural integrity of the surface impoundment in accordance with the requirements of 40 CFR § 257.73(e). To this end, S&ME was authorized to perform a supplemental investigation to support the safety factor assessment. Details regarding the investigation are described in the following sections of this report.

3.0 Information Review and Site Visit

S&ME conducted a cursory review of previous documents relating to the bottom ash pond and conducted a site visit at the facility. AEP provided S&ME with the following documents:

- Site Development Plan 1973 (Dwg. 3-3017-5 and 3-3027-3)
- Assessment of Dam Safety Final Report, Clough Harbour, & Assoc., December, 2009
- Bottom Ash Pond Subsurface Investigation & Analysis, BBC&M Engineering, Inc., August, 2009
- Addendum to Bottom Ash Pond Investigation, BBC&M Engineering, Inc., December, 2010

On August 18, 2015, the undersigned S&ME personnel met with Dr. Mohammad Ajlouni (AEP Civil Engineering) and Mr. Randy Sims (Landfill Operations) at the Cardinal Plant and conducted a site visit at the bottom ash pond. The participants discussed and observed the operations of the bottom ash and recirculation ponds, including the hydraulic structures within the ponds. During our visit, two localized possible seepage areas were observed on the outboard slope of the eastern embankment of the recirculation pond. Based on discussions with the group, it was believed that the seepage areas were relatively new.

One apparent seepage area was located immediately north of the existing riprap and the other was approximately 300 feet north of the riprap. The limits of the possible seepage areas were delineated with a handheld GPS unit. The apparent seepage areas range from 35 to 50 feet wide by 6 to 8 feet high. The seepage areas were observed to be wetter than the surrounding area and were muddy in some areas, which may be a result of mowing operations. While the ground surface has been softened as a result of seepage, there was no indication of flowing water emanating at either of the areas at the time of our visit. Additionally there was no indication of piping of soil. S&ME understands the riprap on the outboard slope of the recirculation pond to the south of the new seepage area was constructed as an inverted filter; similar seepage conditions were observed in this area resulting in construction of the filter. Based on the historical drawings, the embankments do not contain any internal drains to intercept/control the phreatic

surface within the embankment. Despite this, S&ME understands the embankments have otherwise performed well, particularly in regard to shallow sloughs along the outboard slope of the 41 years that they have been in service in the current configuration.

While no other visual observations suggested dam safety concerns, S&ME noted the following modifications to the bottom ash pond complex since the 2009 and 2010 assessments:

- The northern section of the western bottom ash pond embankment was widened on the outboard side to create additional space for construction staging.
- Crest improvements were made to raise low areas and establish a consistent top of dam Elevation of 670 feet.
- The 2009 investigation focused only on the river side embankment. Although the river side embankment is significantly taller than the west embankment, investigation of the west embankment was believed to be warranted.

4.0 Field and Laboratory Work

As part of the 2009 investigation, 7 soil borings were performed along the eastern embankment of the bottom ash pond and recirculation pond. For the 2015 supplemental investigation, S&ME performed 4 soil borings along the western embankments, as well as two additional shallow borings through the eastern embankment crest upstream from the identified seepage areas. The borings are designated as CD-BAP-1501 through B-1505 and MW-BAP-4 through MW-BAP-5. Boring CD-BAP-1503, originally planned to be located at the toe of the west embankment could not be accessed and was not performed. Boring numbers with 'MW' indicate a monitoring well was installed at this location, which were performed as part of a separate hydrogeology study. Additionally, S&ME installed three other monitoring wells, designated MW-BAP-1 through MW-BAP-3, and advanced one soil boring designated CD-BAP-1506 as part of the separate hydrogeology study at the bottom ash pond facility. Although not performed as part of this factor of safety assessment, the results from these explorations were considered in developing our understanding of the embankments and foundation soils. Locations of all explorations are shown on the Plan of Borings included as Drawing No. 1 in Appendix I.

Laboratory testing was performed on selected representative soil samples obtained during the field investigations to determine natural moisture content (ASTM D2216), liquid and plastic limits (S&ME adjustment to ASTM D4318), and grain size analyses (ASTM D422). The results of these and other tests permit an evaluation of the strength, compressibility and permeability characteristics of the soils encountered at this site.

The results of the moisture content testing and of the liquid and plastic limits are graphically displayed on the individual boring logs presented in Appendix I. All laboratory test results, including a summary of laboratory test results and grain size analyses are presented in Appendix II.

5.0 Subsurface Conditions

5.1 Stratigraphy

Borings CD-BAP-1501,CD-BAP-1502, and MW-BAP-5 were performed from the crest of the western embankment, while Boring MW-BAP-4 was performed from the toe of the western embankment. Based on the descriptions of the samples recovered in the borings and laboratory testing, the subsurface stratigraphy for each section can generally be described in descending order from the top of the western embankment as follows:

- Borings CD-BAP-1502 and MW-BAP-5 were performed from the crest of the embankment encountered 15 inches of aggregate at the ground surface overlying 10 to 13 feet of embankment fill consisting of medium-dense to dense fine to coarse sand and gravel and hard clayey silt. SPT N-values (corrected for 60% energy) ranged from 13 to 60 while hand penetrometer measurements on samples exhibiting cohesion ranged from __ to 4.5+ tons per square foot (tsf).
- Boring CD-BAP-1501 was performed from the widened crest area. The boring encountered 15 inches aggregate underlain by 11.5 feet of embankment fill consisting of a thin stratum of medium-stiff clayey silt over of loose to medium dense fine to coarse sand.
- Underlying the embankments, the borings encountered alluvial soils consisting of

Borings CD-BAP-1504 and CD-BAP-1505 were performed from the crest of the eastern embankment adjacent to the observed seepage areas. The main purpose of these boring was to identify potential anomalies within the embankments that would suggest a unique circumstance which could be contributing to the observed seepage. Both borings were advanced to a depth of 16 feet within the embankment fill. For reference, the seepage areas were observed to begin approximately 6 to 8 feet below the crest. These borings, along with results from the sampling from monitoring wells MW-BAP-1, MW-BAP-2 and MW-BAP-3 did not reveal any appreciable differences from the crest borings performed during the 2009 investigation, such as a layer or zone of clean sand, as the embankment fill was already known to contain soils of a varying degree.

The stratigraphy of the eastern embankments is summarized in the text from the 2009 Investigation included as Appendix V.

5.2 Groundwater Conditions

Groundwater observations were made as each boring was being advanced and measurements were made at the completion of drilling. The groundwater observations are graphically displayed on the boring logs and also noted at the bottom of the log, and are referenced from the ground surface. Groundwater was encountered within the crest borings at a depth of approximately 15 feet. Groundwater in Boring MW-BAP-4 was encountered at a depth of 5.5 feet. The groundwater readings correlate to an approximate Elevation of 655 feet.

Temporary open standpipe piezometers were installed in Borings CD-BAP-1504 and CD-BAP-1505 to obtain groundwater information in relation to the observed seepage area. Unfortunately, owing to the presence of overhead electric along the outboard side of the crest, the borings had to be performed near the inboard side of the crest. Several longer term groundwater readings were taken during the course of

the field work. The readings are summarized on the individual well logs, and generally range between Elevation 661 and Elevation 663. The readings indicate a small decrease in water level from the recirculation pond operating pool. It should be noted that all of the wells positioned within the crest are located on the inboard side to avoid blocking the road as well as the overhead power lines.

5.3 Shear Strength and Permeability

The laboratory testing results for the 2015 investigation were compared to laboratory testing completed as part of the 2009 investigation. The comparison of the index testing was performed to determine if there was any justification for developing different shear strength and permeability values for the subsurface materials encountered in the western side of the complex than had been previously been estimated for cross-sections on the eastern side in 2009. As the results of the 2009 laboratory index testing are very similar to the new index testing results, S&ME is of the opinion that the strength parameters used to characterize the eastern embankment and foundation soils in 2009 are applicable to the supplemental investigation of the western embankment and foundation soils.

The shear strength parameters used in the slope stability analysis are shown in Table 5-1.

Matanial Description	Ywet	Effec	ctive	
Material Description	(pcf)	φ′	c' (psf)	Reference
Newer Embankment Fill	125	31°	0	SPT and Index Testing Correlations
Original Embankment Fill	125	30°	100	Index Testing Correlations
Alluvium Silt and Clay	125	30°	0	Index Testing Correlations
Organic Clayey Silt	125	30°	0	Index Testing Correlations and CU Triaxial Test (BBCM 2009)
Very Loose to Loose Glacial Outwash Sand and Gravel	115	29°	0	SPT and Grain Size Correlations
Medium Dense Glacial Outwash Sand and Gravel	120	34°	0	SPT and Grain Size Correlations
Granular Embankment Fill ⁽¹⁾	115	30°	0	SPT and Grain Size Correlations

Table 5-1 – Shear Strength Parameters

⁽¹⁾Applies only to widened crest area on the northwestern side of bottom ash pond

6.0 Safety Factor Assessment

As part of the safety factor assessment, S&ME completed Parts 1 and 2 of Section 257.73(e) of the Final Rules for the Disposal of Coal Combustion Residuals from Electric Utilities published on April 17, 2015 in the Federal Register. In accordance with the Rule, the analysis was performed for the critical cross-sections(s) that are anticipated to be most susceptible of all cross-sections to structural failure based on appropriate engineering considerations. The Rule specified the following loading conditions for analysis:

- i. Static Factor of Safety under the long-term, maximum storage pool loading condition must equal or exceed 1.50.
- ii. Calculated static factor of safety under the maximum surcharge pool loading condition must equal or exceed 1.50.
- iii. The calculated seismic factor of safety must equal or exceed 1.00.
- iv. For dikes constructed of soils susceptible to liquefaction, the calculated liquefaction factor of safety must equal or exceed 1.20.

6.1 Limit Equilibrium Analyses

The 2009 Investigation Report and the 2010 Addendum discuss in detail the subsurface investigation, laboratory testing, parameter justification, seepage analyses and limit equilibrium slope stability analyses that were performed to develop safety factors for the bottom ash pond embankments. As mentioned previously, engineering parameters developed as part of the 2009 and 2010 investigations were utilized for the new analyses associated with the western embankment as the laboratory testing and subsurface investigation did not encounter soil properties that differed greatly from the soils encountered in the previous investigations.

In summary, four sections along the eastern (river-side) embankment and two sections along the western embankment were studied. Both cross-sections through the western embankment are located within the bottom ash pond as the embankment adjacent to the recirculation pond is only 4 to 6 feet high and access to the toe was not readily available. Subsurface information for each section was obtained by performing borings through the crest and toe of the embankment. Based on a review of all six sections explored, three were selected for detailed limit equilibrium stability analysis (two on the eastern embankment and one on the western embankment).

Prior to performing the limit equilibrium stability analyses as part of the 2009 assessment, seepage analyses were performed to develop a better understanding of the likely phreatic surface within the embankment and foundation. The models were calibrated by adding additional total head boundary conditions within the subsurface to best model the groundwater table as observed in the observation wells. Although a classically shaped phreatic surface extending from the ash pond level to the Ohio River was generated by the seepage analyses, much of the seepage emanating from the ponds appears to be moving downward through the newer embankment fill and thin stratum of alluvium soils and into the glacial outwash sand and gravel stratum which essentially serves as a drain.

Results of the slope stability analysis indicate that the critical cross-section occurs through the eastern embankment of the bottom ash pond (referred to as Section D in the 2009 and 2010 assessments). The design cross-section does not vary along the eastern embankment, but Section D yielded the lowest factors of safety due to slight variations in the outboard slope. All load cases performed for the Safety Factor Assessment as well as additional load cases evaluated for typical US Army Corps of Engineer's requirements met the minimum factor of safety for global stability.

One observed seepage area is located just north of Section B and the other is located approximately 200 feet south. Comparison of boring logs for CD-BAP-1504 and CD-BAP-1505 with the log for boring CD-PZ-BAP-0902 located at Section B do not reveal any key differences in the embankment fill. In fact, Boring CD-PZ-BAP-0902 exhibited a larger zone of granular embankment fill located within the observed

elevation of seepage on the outboard slope, but no seepage was observed adjacent to this boring. The fill soils are believed to vary laterally through the embankment as much as it was observed to vary vertically at the boring locations, suggesting that the granular layers observed in the borings are unlikely to extend all the way through the embankment. Considering this, it is the opinion of S&ME that at this time, the seepage areas are representative of localized pockets of more permeable soils within the overall embankment matrix. As such, it is not believed that the phreatic surface intercepts the outboard face, but rather that there are narrow zones of seepage with unsaturated soils beneath. Nonetheless, these areas should be addressed, as further discussed below.

As noted, the seepage observed during our August, 2015 site visit appeared to occur in two isolated areas. With time, the outboard slope at these locations may weaken due to the presence of groundwater within close proximity to the ground surface resulting in reduced shear strength and shallow slope failures. Though such a failure would typically be minor in extent, S&ME recommends these areas be addressed in the near future before they lead to more significant issues over time. Construction of an inverted filter may be suitable given the performance of the existing inverted filter on the south end. S&ME also recommends continued monitoring of these areas to ensure soils particles are not being carried from inside the embankment.

6.2 Liquefaction Potential of Embankment Soils

S&ME evaluated the potential of the embankment soils to liquefy during a seismic event. The embankment material is classified as a fined grained material and the recovered samples with gradation testing were evaluated following guidelines presented in the 2003 NEHRP (National Earthquake Hazards Reduction Program) Recommended Provisions for Seismic Regulations for New Buildings and Other Structures. The provisions in Chapter 7 indicate that liquefaction potential in fine grained soils should be assessed provided the following criteria are met (Seed and Idriss 1982; Seed et al., 1983): the weight of the soil particles finer than 0.005 mm is less than 15 percent of the dry unit weight of a specimen of the soil; the liquid limit of soil is less than 35 percent; and the moisture content of the in-place soil is greater than 0.9 times the liquid limit. If all of these criteria are not met, the soils may be considered non-liquefiable.

Laboratory testing results from 16 fine grained samples that were available from the 2009 and 2015 investigations for evaluation of the screening criteria. Of the 16 samples, 8 samples contained data to check all three screening criteria, and 7 samples contained data to check two screening criterion. Based on the results of the screening, no sample met all 3 criteria; therefore, these fine grained embankment fill can be considered non-liquefiable. A table depicting this evaluation is included in Appendix IV.

The potential for the coarse grained embankment soils to resist liquefaction was evaluated. The fine grained (cohesive) and coarse grained (granular) embankment soils appear to be from the same borrow source as there are no well-defined layers and often only minor variations in the percent by weight of the recovered sample change the main description from fine grained to coarse grained. Although construction records were not available, the density of the coarse grained samples and consistency of the fine grained samples within the embankment fill suggest they were well compacted. Based on the controlled manner in which the fill was placed, the coarse grained embankment soils can be considered non-liquefiable.

6.3 Summary of Results

A summary of the computed safety factors for the critical cross-section is provided in Table 5-2. Also included in the table are the minimum values defined in 40 CFR § 257.73(e)(1) subparts (i) through (iv). Graphical output corresponding to the analysis cases are presented in Appendix IV along with additional slope stability load cases evaluated during the course of the bottom ash pond assessments.

Analysis Case	Minimum Safety Factor	Computed Safety Factor
Long-term, maximum storage pool	1.50	1.52
Maximum surcharge pool	1.40	1.52
Pseudo-static seismic loading	1.00	1.09
Embankment Liquefaction	1.20	Non-liquefiable

Table 6-1 – Safety Factor Summary

7.0 Certification

Based on our previous investigations and current assessment of the Bottom Ash Pond facility, S&ME certifies that this assessment meets the requirements of paragraphs (e)(1) and (e)(2) of Part 257.73 for the critical cross-section of the embankment.

We appreciate having been given the opportunity to be of service on this project. If you have any questions, please do not hesitate to contact this office.

Sincerely,

S&ME, Inc.

Micha D. La

Michael G. Rowland, P.E. Senior Engineer Registration No. 65559

Appendices

Appendix I – 2009 & 2015 Site Investigation Figures

В	С

STING	ELEVATION									
13493.10	668.68									
13568.73	668.04									
13647.44	650.07									
13666.53	668.05									
13742.24	650.11									
13791.36	668.64									
13886.71	650.34									
13678.00	671									
13713.00	671									
13525.00	670									
13591.00	670									
13205.00	671									
13925.00	670									
13705.00	670				. – .					
13518.00	670				LEC	<u>SEND</u>				
13614.00	660					EXISTING GROUND CONTOUR	R (1 FT. INTERVAL)			
13275.00	670					EXISTING WATER SURFACE (A	AT TIME OF SURVEY)			
					· · · · · · · · · · · · · · · · · · ·					
						EXISTING VEGETATION				
					CV-PZ-BAP-0901	BORING NUMBER AND LOCAT 2009 INVESTIGATION	ION			
	50				CD-BAP-1501	BORING NUMBER AND LOCAT	ION	PROJECT NUMBER:	7217-15-007B	DRAWN BY:
			C V		Ύ	2015 INVESTIGATION		DRAWING DATE:	12-30-2015	ENGINEER:
	0	100 200			MVV-BAP-1	MONITORING WELL NUMBER A	AND DN	LAST UPDATED:	12-30-2015	APPROVED BY:
					'					SCALE:
D		E	CM 1 2 3 F 4 5 6 7	G	3 _{16 INCH} 4 H	12 16 J	TENTHS 10 K 20	- 30 L	INCHES	1 M 2

EXPLANATION OF SYMBOLS AND TERMS USED ON BORING LOGS FOR SAMPLING AND DESCRIPTION OF SOIL

SAMPLING DATA

- Blocked-in "SAMPLES" column indicates sample was attempted and recovered within this depth interval.

- Sample was attempted within this interval but not recovered.
- 2/5/9 The number of blows required for each 6-inch increment of penetration of a "Standard" 2-inch O.D. split-barrel sampler, driven a distance of 18 inches by a 140-pound hammer freely falling 30 inches. Addition of one of the following symbols indicates the use of a split-barrel other than the 2" O.D. sampler:

2S -3S -

- 2¹/₂"O.D. split-barrel sampler

- 3" O.D. split-barrel sampler

- P Shelby tube sampler, 3" O.D., hydraulically pushed.
- R Refusal of sampler in very-hard or dense soil, or on a resistant surface.
- 50-2" Number of blows (50) to drive a split-barrel sampler a certain number of inches (2), other than the normal 6-inch increment.
- S/D Split-barrel sampler (S) advanced by weight of drill rods (D),
- S/H Split-barrel sampler (S) advanced by combined weight of rods and drive hammer (H).

SOIL DESCRIPTIONS

All soils have been classified basically in accordance with the Unified Soil Classification System, but this system has been augmented by the use of special adjectives to designate the approximate percentages of minor components as follows:

Adjective	Percent by Weight
trace	1 to 10
little	11 to 20
some	21 to 35
"and"	36 to 50

The following terms are used to describe density and consistency of soils:

<u>Term (Granular Soils)</u>	<u>Blows per foot</u>
Very-loose	Less than 5
Loose	5 to 10
Medium-dense	11 to 30
Dense	31 to 50
Very-dense	Over 50
Term (Cohesive Soils)	<u>Qu (tsf)</u>
Very-soft	Less than 0.25
Soft	0.25 to 0.5
Medium-stiff	0.5 to 1.0
Stiff	1.0 to 2.0
Very-stiff	2.0 to 4.0
Hard	Over 4.0

LOG OF BORING NO. CD-BAP-1501 Page 1 of 1 **BOTTOM ASH POND SUPPLEMENTAL INVESTIGATION** CARDINAL PLANT, BRILLIANT, OH LOCATION: N. 820,853, E. 2,513,678 11/17/15 - 11/18/15 ELEVATION: 671 DATE: 4-1/4" I.D. Hollow-stem Auger 16.0' DRILLING METHOD: COMPLETION DEPTH: 2" O.D. Split-barrel Sampler SAMPLER(S): SAMPLE NUMBER NATURAL CONSISTENCY INDEX SAMPLE SAMPLE REC-% SAMPLE EFFORT DEPTH. FEET TEST ELEV NATURAL MOISTURE CONTENT DESCRIPTION N60 RESULTS OUID LIMI T.TMT 0 **AGGREGATE - 15 INCHES** 20 30 40 669.8 12 FILL: Medium-stiff gray clayey silt, "and" fine to 87 45 1 15 coarse sand, little fine gravel, intermixed with 21 668.2 silty clay, damp. 13 2 67 FILL: Loose to medium-dense brown and gray 6 fine to coarse sand, little to some silty fine to 4 coarse gravel, little to some silt, damp. 8 53 3 3 G 5 3 2010 NEW DEFAULT BORING LOG-W/ N60 4 6 53 3 5 10 80 3 5 18 80 6 G 6 8 10-7 0 50-1"R 659.5 FILL: Dense brown fine to coarse sand, trace fine 40 73 8 19 gravel, some to "and" clayey silt, damp. . × 658.0 13 9A 43 100 FILL: Stiff to very-stiff gray silty clay, some to H=1.75-2.25 10 15 "and" fine to coarse sand, little fine to coarse 9B H=3.0-4.0 656.5 gravel, damp. 15 FILL: Dense brown and gray fine to coarse sand, 10 34 67 8 little fine to coarse gravel, some silt, damp. 655.0 19 - Boring backfilled with cement bentonite grout. - Boring location recorded with a hand-held GPS unit. Elevation estimated from March, 2015 plant survey. - Datum: Ohio State Plane South NAD 27/ 20^{-1} NAVD 29 (Plant Grid). 25 30 SYMBOLS USED TO INDICATE TEST RESULTS $\overline{\Delta}$ Ţ Drill Rod Energy Ratio : 0.75 WATER LEVEL: Gradation G See H - Penetrometer (tsf) - Uncon Comp Last Calibration Date : 2/20/2013 WATER NOTE: Separate W-Unit Dry Wt (pcf) T - Triax Comp C - Consol. Curves D - Relative Dens (%) **Drill Rig Number :** S&ME DATE: ATV 550-2

LOG OF BORING NO. CD-BAP-1502 Page 1 of 2 **BOTTOM ASH POND SUPPLEMENTAL INVESTIGATION** CARDINAL PLANT, BRILLIANT, OH LOCATION: N. 820,839, E. 2,513,713 11/18/15 ELEVATION: 671 DATE: 4-1/4" I.D. Hollow-stem Auger COMPLETION DEPTH: 41.5' DRILLING METHOD: 2" O.D. Split-barrel Sampler SAMPLER(S): SAMPLE NUMBER SAMPLE NATURAL CONSISTENCY INDEX SAMPLE SAMPLE REC-% DEPTH, FEET EFFORT TEST ELEV NATURAL MOISTURE CONTENT DESCRIPTION N60 RESULTS ASTIC T.TMT LTOUTD LTM 0 **AGGREGATE - 12 INCHES** 10 20 30 40 670.0 FILL: Dense brown and gray fine to coarse 12 38 53 1 gravel, some fine to coarse sand, little silt, damp. 668.5 18 FILL: Hard brown and gray clayey silt, "and" fine 60 80 2 H=4.5 to coarse sand, little fine gravel, damp. 18 667.2 30 FILL: Medium-dense to very-dense brown and gray fine to coarse sand, little to some fine to 51 80 3 23 5 coarse gravel, little to some silt, silty clay, or 18 2010 NEW DEFAULT BORING LOG-W/ N60 clayey silt (varies), damp. 31 80 4 × × G 13 5 26 93 10 662.5 11 FILL: Hard gray and brown clayey silt, some to 33 87 H=4.5 6 "and" fine to coarse sand, little fine to coarse 11 15 gravel, damp. -10-41 53 7 H=4.5 15 Ρ 657.5 FILL: Medium-dense gray and brown fine to 8 14 67 coarse sand, some fine to coarse gravel, some 4 silty clay, moist becoming wet. 15р 654.0 FILL: Medium-dense gray fine to coarse sand, 9 19 87 • * 7 some fine to coarse gravel, some clayey silt, wet. × G 652.7 8 Stiff gray clayey silt, some fine to coarse sand, some fine gravel, moist. 10 11 100 H=1.25 6 3 20^{-1} Ρ H=1.25 649.2 Stiff brown silty clay, some fine to coarse sand, little to some fine to coarse gravel, moist. 13 73 H=2.5 11 5 0 12 33 . H=1.25 SH ŚΗ 25 645.5 Very-stiff red-brown mottled with gray silty clay, trace to little fine to coarse sand, contains silt 93 H=3.0-3.75 13 5 16 seams, damp. 93 13 H=3.5 14 30 SYMBOLS USED TO INDICATE TEST RESULTS Ţ Drill Rod Energy Ratio : 0.75 WATER LEVEL: Gradation See H - Penetrometer (tsf) - Uncon Comp Last Calibration Date : 2/20/2013 WATER NOTE: Separate W-Unit Dry Wt (pcf) Triax Comp Curves D - Relative Dens (%) **Drill Rig Number :** S&ME DATE: Ĉ - Consol ATV 550-2

JOB: 7217-15-007A

-CONTINUED-

LOG OF BORING NO. CD-BAP-1502 Page 2 of 2 **BOTTOM ASH POND SUPPLEMENTAL INVESTIGATION** CARDINAL PLANT, BRILLIANT, OH LOCATION: N. 820,839, E. 2,513,713 11/18/15 ELEVATION: 671 DATE: 4-1/4" I.D. Hollow-stem Auger 41.5' DRILLING METHOD: COMPLETION DEPTH: 2" O.D. Split-barrel Sampler SAMPLER(S): SAMPLE NUMBER NATURAL CONSISTENCY INDEX SAMPLE SAMPLE REC-% SAMPLE EFFORT DEPTH. FEET ELEV TEST NATURAL MOISTURE CONTENT N_{60} DESCRIPTION RESULTS OUID LIMI T, TMT 30-Very-stiff red-brown mottled with gray silty clay, 20 30 40 trace to little fine to coarse sand, contains silt seams, damp. 6 [/]5 15 87 15 H=3.5 638.5 Stiff to very-stiff brown mottled with gray silty clay, some to "and" from to medium sand, trace Ρ H=1.5-2.25 coarse sand, damp. 636.5 Loose red-brown from to medium sand, trace 35-8 100 16 3 coarse sand, "and" silt, damp. 2010 NEW DEFAULT BORING LOG-W/ N60 3 634.0 Stiff red-brown silty clay, "and" fine to medium sand, trace coarse sand, trace fine gravel, damp. 632.7 100 17 2 6 H=1.75 Very-loose brown fine to medium sand, "and" silt, damp. 40-18 5 67 629.5 - Encountered water at 15.0' - Boring backfilled with cement bentonite grout. - Boring location surveyed with a hand-held GPS unit. Elevation estimated from March 2015 plant 45 survey. - Datum: Ohio State Plane South NAD 27/NAVD 29 (Plant Grid). 50-55 60 SYMBOLS USED TO INDICATE TEST RESULTS $\overline{\Delta}$ Ţ Drill Rod Energy Ratio : 0.75 WATER LEVEL: Gradation G See H - Penetrometer (tsf) - Uncon Comp Last Calibration Date : 2/20/2013 WATER NOTE: Separate W-Unit Dry Wt (pcf) T - Triax Comp C - Consol. Curves D - Relative Dens (%) **Drill Rig Number :** S&ME DATE:

Page 1 of 1

2010 NEW DEFAULT BORING LOG-W/ N60

LOG OF BORING NO. CD-BAP-1504 BOTTOM ASH POND SUPPLEMENTAL INVESTIGATION CARDINAL PLANT, BRILLIANT, OH

LOG OF BORING NO. CD-BAP-1505 Page 1 of 1 **BOTTOM ASH POND SUPPLEMENTAL INVESTIGATION** CARDINAL PLANT, BRILLIANT, OH LOCATION: N. 819,448, E. 2,513,591 11/17/15 ELEVATION: 670 DATE: 17.5' 4-1/4" I.D. Hollow-stem Auger COMPLETION DEPTH: DRILLING METHOD: 2" O.D. Split-barrel Sampler SAMPLER(S): SAMPLE NUMBER SAMPLE NATURAL CONSISTENCY INDEX SAMPLE SAMPLE REC-% DEPTH. FEET EFFORT TEST ELEV NATURAL MOISTURE CONTENT N60 DESCRIPTION RESULTS T.TMT OUTD LITMI 0 **AGGREGATE - 16 INCHES** 20 30 40 668.7 FILL: Medium-dense to dense brown and gray 31 60 12 fine to coarse sand, some fine to coarse gravel, 13 little silt, dry. 65 53 2 12 666.0 40 FILL: Medium-dense brown fine to coarse gravel, 10 24 3 53 10 some fine to coarse sand, little to some silt, dry. 5 q 13 4 29 q 14 5 28 80 q 661.5 13 \sim FILL: Very-stiff to hard brown clayey silt, "and" 15 53 H=3.5 6 fine to coarse sand, little to some fine to coarse Ó 5 gravel, damp to moist. 10 7A 23 100 H=1.5 659.2 FILL: Medium-dense brown and gray fine to 7B 11 coarse sand, some fine to coarse gravel, little silty clay, dry. 8 18 73 657.0 q FILL: Hard brown and gray silty clay, some fine 9 16 67 H=4 5 to coarse sand, little fine to coarse gravel, moist.

87 FILL: Medium-stiff brown and gray silty clay, 53 some fine to coarse sand, little fine to coarse gravel, moist.

- No seepage encountered.

- Encountered water at 14.5'.

- Borehole converted to temporary piezometer well upon completion - See Separate Well Log. - Boring backfilled with cement bentonite grout. - Boring location surveyed with a hand-held GPS

unit. Elevation estimated from March 2015 plant survey.

Gradation

- Uncon Comp

T - Triax Comp C - Consol.

G

- Datum: Ohio State Plane South NAD 27/NAVD 29 (Plant Grid).

SYMBOLS USED TO INDICATE

See

Separate

Curves

TEST RESULTS

H - Penetrometer (tsf)

W-Unit Dry Wt (pcf)

D-Relative Dens (%)

12/10/15 DATE: JOB: 7217-15-007A

 $\overline{\Delta}$

8.8

In Well

Ţ

2010 NEW DEFAULT BORING LOG-W/ N60

15

 20^{-1}

25

30

WATER LEVEL:

WATER NOTE:

654.0

652.5

10

11

16

11

5

3

8

6

Last Calibration Date :	2/20/2013
Drill Rig Number :	S&ME
5	ATV 550-

Drill Rod Energy Ratio : 0.75

H=4.5

H=0.5-1.0

G

Ò

LOG OF BORING NO. MW-BAP-4 Page 1 of 2 BOTTOM ASH POND SUPPLEMENTAL INVESTIGATION CARDINAL PLANT, BRILLIANT, OH LOCATION: N. 820,884, E. 2,513,614 11/20/15 - 11/23/15 ELEVATION: 660 DATE: 4-1/4" I.D. Hollow-stem Auger COMPLETION DEPTH: 40.0' DRILLING METHOD: 2" O.D. Split-barrel Sampler SAMPLER(S): SAMPLE NUMBER NATURAL CONSISTENCY INDEX SAMPLE SAMPLE REC-% SAMPLE EFFORT DEPTH. FEET TEST ELEV NATURAL MOISTURE CONTENT N60 DESCRIPTION RESULTS OUID LIMI T, TMT 0 **AGGREGATE - 12 INCHES** 10 20 30 40 659.0 FILL: Medium-dense to dense gray and brown 15 39 fine to coarse gravel, some to "and" fine to coarse 87 H=4.25-4.5 1 sand, little to some silt, dry. 16 9 2 18 53 5 2010 NEW DEFAULT BORING LOG-W/ N60 9 3 20 67 5 654.7 FILL: Very-soft brown and gray silty clay, "and" 654.2 35 fine to coarse sand, little fine to coarse gravel. 13 4 31 87 FILL: Dense bown fine to coarse sand, little fine 12 to coarse gravel, "and" clayey silt, cobbles, moist. 20 5 -50-3"R 652.5 Stiff to very-stiff dark-brown mottled with dark-gray silty clay, little fine to coarse sand, trace fine gravel, slightly organic, damp. 3, 9 87 H=2.0-3.06 Δ 10 Р H=1.25-2.5 15 643.8 Very-stiff brown mottled with gray silty clay, 5 7 14 87 H=2.0-3.5 little fine to medium sand, trace coarse sand, few 6 cobbles, contains silt seams near top of stratum, damp. 7 18 100 H=2.25-3.25 20 10 28 5 9 100 14 H=3.0 5 100 H=3.25 10 14 25 SYMBOLS USED TO INDICATE TEST RESULTS Ţ Drill Rod Energy Ratio : 0.75 WATER LEVEL: Gradation G See H - Penetrometer (tsf) - Uncon Comp Last Calibration Date : 8/2/2013 WATER NOTE: Separate W-Unit Dry Wt (pcf) Triax Comp Curves D-Relative Dens (%) **Drill Rig Number :** S&ME DATE: Ĉ - Consol ATV 550-2

JOB: 7217-15-007B

-CONTINUED-

LOG OF BORING NO. MW-BAP-4 Page 2 of 2 **BOTTOM ASH POND SUPPLEMENTAL INVESTIGATION** CARDINAL PLANT, BRILLIANT, OH LOCATION: N. 820,884, E. 2,513,614 11/20/15 - 11/23/15 ELEVATION: 660 DATE: 4-1/4" I.D. Hollow-stem Auger COMPLETION DEPTH: 40.0' DRILLING METHOD: 2" O.D. Split-barrel Sampler SAMPLER(S): SAMPLE NUMBER NATURAL CONSISTENCY INDEX SAMPLE REC-% SAMPLE EFFORT DEPTH FEET SAMPLI TEST ELEV NATURAL MOISTURE CONTENT N_{60} DESCRIPTION RESULTS OUID LIMI T, TMT 25 Very-stiff brown mottled with gray silty clay, 10 20 30 40 little fine to medium sand, trace coarse sand, few cobbles, contains silt seamsnear top of stratum, 11A [/]3_/ 9 100 H=2.5 633.3 damp. 11B H=0.5-1.5 Δ Medium-stiff to stiff brown clayey silt, "and" fine to medium sand, trace coarse sand, includes sand seams, moist. 12 12 4 100 2010 NEW DEFAULT BORING LOG-W/ N60 30-629.5 Very-loose brown and gray fine to medium sand, little to "and" silt (percent varies), contains zones SH ′SH, with a trace of coarse sand, wet. 13 0 100 SH ′SΗ, 0 14 67 -35 SH 15 1 3 67 S₽ ′SH, 100 0 16 620.0 40-- Encountered water at 5.5'. - Encountered cobbles at 18.5'. - Borehole converted to monitoring well upon completion - See separate well log. - Boring elevation recorded with a hand held GPS unit. Elevation estimated from March 2015 survey. - Datum: Ohio State Plane South, NAD 45 27/NAVD 29 (Plant Grid). 50 SYMBOLS USED TO INDICATE TEST RESULTS $\overline{\Delta}$ Ţ Drill Rod Energy Ratio : 0.75 WATER LEVEL: - Gradation - Uncon Comp G See H - Penetrometer (tsf) Last Calibration Date : 8/2/2013 WATER NOTE: Separate W-Unit Dry Wt (pcf) T - Triax Comp C - Consol. Curves D-Relative Dens (%) **Drill Rig Number :** S&ME DATE:

LOG OF BORING NO. MW-BAP-5 Page 1 of 3 **BOTTOM ASH POND SUPPLEMENTAL INVESTIGATION** CARDINAL PLANT, BRILLIANT, OH 11/24/15 - 11/25/15 LOCATION: N. 820,057, E. 2,513,275 ELEVATION: 670 DATE: 62.5' 4-1/4" I.D. Hollow-stem Auger DRILLING METHOD: COMPLETION DEPTH: 2" O.D. Split-barrel Sampler SAMPLER(S): SAMPLE NUMBER NATURAL CONSISTENCY INDEX SAMPLE SAMPLE SAMPLE EFFORT REC-% DEPTH TEST ELEV NATURAL MOISTURE CONTENT N60 DESCRIPTION RESULTS T, TMT 0 **AGGREGATE - 12 INCHES** 10 20 30 40 669.0 FILL: Medium-dense brown fine to coarse sand, 8 some fine to coarse gravel, some to "and" silty 24 60 1 11 clay, dry. 5 2 13 60 5 2010 NEW DEFAULT BORING LOG-W/ N60 4 3 13 73 5 6 664.5 FILL: Hard gray and brown silty clay, "and" fine 9 to coarse sand, little to some fine to coarse gravel, 4 51 87 H=4.5 32 damp. 15 5 39 80 H=4.5 16 661.5 FILL: Medium-dense brown and gray fine to 13 30 87 coarse sand, little fine to coarse gravel, some silty 6 11 clay, damp. 660.0 10 FILL: Hard brown silty clay, some fine to coarse Р sand, some fine to coarse gravel (shale H=4.5 fragments), damp. 5 19 7 80 H=4.5 '10656.5 FILL: Medium-dense to dense brown fine to 10 coarse gravel, some fine to coarse sand, some 11 80 8 45 H=3.0 25 silty clay becoming trace silt at bottom of stratum, 15damp. 7 9 16 6 653.1 10A 20 100 Medium-stiff to stiff gray mottled with dark-gray 6 10**B** and brown silty clay, trace fine to coarse sand, 10 trace fine gravel, few roots, few silt seams, slightly organic, moist. Р 20-S₽ 1, 100 11 5 H=0.5-1.25 647.0 Medium-stiff to very-stiff brown mottled with gray silty clay, trace to little fine to coarse sand, 2 8 100 damp. 12 H=3.5 25 SYMBOLS USED TO INDICATE TEST RESULTS Drill Rod Energy Ratio : 0.75 ▼ WATER LEVEL: Gradation See H - Penetrometer (tsf - Uncon Comp Last Calibration Date : WATER NOTE: 8/2/2013 Separate W-Unit Dry Wt (pcf) Triax Comp Curves D - Relative Dens (%) **Drill Rig Number :** S&ME DATE: Č - Consol ATV 550-2

-CONTINUED-

-CONTINUED-

	Pag	e 3 o	f 3		BOT	ГТО	M AS CA	LOG OF BORING NO. MW-BAP-5 SH POND SUPPLEMENTAL INVESTIGATION ARDINAL PLANT, BRILLIANT, OH		S&ME					
	LOCA	CATION: N. 820,057, E. 2,513,275 ELEVATION: 670 DATE: 1											11/24/15 - 11/25/15		
	DRIL	LING	METH	łOD	: _	4-1/4	4" I.E	0. Hollow-stem Auger		CO	OMPL	ETION	DEPTH:	6	52.5'
	SAM	PLER	(S):			2" C).D. S	plit-barrel Sampler							
	ELEV.	JEPTH, FEET	AMPLE UMBER	AMPLE	FFORT	N60	AMPLE tec-%	DESCRIPTION			RAL C ATURA	CONSIST	ENCY IN TURE CO	DEX NTENT	TEST RESULTS
ŀ	610.5	-50-	ΝZ	vi v	ĞШ		$^{\rm S}_{\rm F}$	Medium stiff to stiff gray and dark gray organic		PLAS	TIC I	$\frac{1}{20}$	-LIQUIE		
ŀ	019.5							clavev silt, trace fine to coarse sand, damp.		10					_
			21	6	[/] 9 _/ 9	23	87	Medium-dense to dense fine to coarse gravel, some to "and" fine to coarse sand, trace to little silt, wet.							-
V/ N6U		- 55-	22	8	[/] 21 _{/34}	69	87								-
T BURING LUG-V	614.6		23	14	⁴ /20/14	43	80	Medium-dense to dense gray and brown fine to coarse sand, "and" fine to coarse gravel, little silt, wet.							-
10 NEW DEFAUL			24	7	/ _{12/}	35	60								-
70		- 60-		8	′16 /										-
	<u>607.5</u>		25		⁴ /5	11	60								-
		-65-						 Encountered water at 17.0'. Borehole converted to monitoring well upon completion. See separate well log. 							-
								- Boring location recorded with a hand-held GPS unit. Elevation estimated from March 2015 plant							-
								survey. - Datum: Ohio State Plane South NAD 27/NAVD 29 (Plant Grid).							-
		- 70-													- - -
															-
															-
	WATE WAT	- 75- R LE ER N D	VEL: OTE: ATE:	¥			¥	G - Gradation See H - Penetro Q - Uncon Comp Separate W - Unit Dr T - Triax Comp Curves D - Relativ	RESUL omete ry Wt ve De	TS r (t (pc ns (5f) f) %)	orill Rod Last Ca Dri	Energy libration	Ratio : Date : mber :	0.75 8/2/2013 S&ME

2009 SITE INVESTIGATION

Ohio Quad Map.tif ~ Tiltonsville lmages; Xrefs; File

	ВС	D		F
DWG, NO, PLATE 3				
>				
		6000		
	675		6	
_	670			
	660	ASH POND		
	655	FiL 	L: V.ST - HD SILTY CL AY	
	<u>650</u> 645		L: M.DE FINE TO COARSE GRAVEL	
3	640		re Silty CLAY	
	635	V.L	O SILT	
	625	V.S	U ORG CLAYEY SI LT	
	620	M.C	DE SAND AND GRAVEL	
	<u>615</u> 610			
	605			
	<u>600</u> 0+	0	1+00	
			SECTION 'A'	
F			Doring BAP-0901	
_				
		- 0904 - 0904		
	675	PZ-BAK	n	
	670	පිම	Ŭ H	<u> </u>
	<u> </u>	ASH POND FILL:	V.ST - HD SILTY CLAY	SO- de de
_	655	FILL:	M.DE - V.DE GRAVEL	-Z-d-Q:
	650	4/10/09 V FILL:	M,DE - V,DE GRAVEL	
	640			4/10/09 V FILL: V.ST - HD SILTY CLAY
				V.SO ORG CLAYEY SILT
	635			
	635 630 625	LO-I	I,DE F-C SAND	V.LO F-C SAND
	635 630 625 620	LO-1	A.DE F-C SAND	V.LO F-C SAND M.DE - DE F-C SAND AND GRAVEL
	635 630 625 620 615 610	LO-I	A.DE F-C SAND	V.LO F-C SAND M.DE - DE F-C SAND AND GRAVEL
	635 630 625 620 615 610 605		A.DE F-C SAND SAND AND GRAVEL	V.LO F-C SAND M.DE - DE F-C SAND AND GRAVEL
	635 630 625 620 615 610 605 600 0+		A.DE F-C SAND SAND AND GRAVEL 1+00	V.LO F-C SAND M.DE - DE F-C SAND AND GRAVEL
	635 630 625 620 615 610 605 600 0+	LO-1	A.DE F-C SAND SAND AND GRAVEL 1+00	V.LO F-C SAND M.DE - DE F-C SAND AND GRAVEL
	635 630 620 615 610 605 600 0+	LO-1	A.DE F-C SAND SAND AND GRAVEL 1+00 SECTION 'C'	V.LO F-C SAND M.DE - DE F-C SAND AND GRAVEL
	635 630 620 615 610 605 600 0+	LO-1	A.DE F-C SAND SAND AND GRAVEL 1+00 SECTION 'C' Borings BAP-0904 & BAP-090	VLO F-C SAND M.DE - DE F-C SAND AND GRAVEL
	635 630 625 620 615 610 605 600 0+	LO-1	A.DE F-C SAND SAND AND GRAVEL 1+00 SECTION 'C' Borings BAP-0904 & BAP-090	V.LO F-C SAND M.DE - DE F-C SAND AND GRAVEL
	635 620 615 610 605 600 0+	LO-1	A.DE F-C SAND SAND AND GRAVEL 1+00 SECTION 'C' Borings BAP-0904 & BAP-090	VLO F-C SAND M.DE - DE F-C SAND AND GRAVEL
	635 620 615 610 605 600 0+	LO-1	A.DE F-C SAND SAND AND GRAVEL 1+00 SECTION 'C' Borings BAP-0904 & BAP-090	VLO F-C SAND M.DE - DE F-C SAND AND GRAVEL
	635 620 610 600 0+	LO-1	A.DE F-C SAND SAND AND GRAVEL 1+00 SECTION 'C' Borings BAP-0904 & BAP-090	D5
	635 620 615 600 0+		A.DE F-C SAND	V.LO F-C SAND M.DE - DE F-C SAND AND GRAVEL
	635 620 615 610 605 600 0+	LO-I	A.DE F-C SAND	V.LO F-C SAND M.DE - DE F-C SAND AND GRAVEL
	636 630 625 620 615 610 605 600 04	LO-I	A.DE F-C SAND	D5
	636 620 615 610 600 0+	LO-1	A.DE F-C SAND	V.LO F-C SAND M.DE - DE F-C SAND AND GRAVEL
	635 620 615 610 605 600 0+		A.DE F-C SAND	D5
	635 620 615 600 0+		A.DE F-C SAND	D5
	635 620 615 610 605 600 0+		A.DE F-C SAND	VLO F-C SAND M.DE - DE F-C SAND AND GRAVEL
	636 630 625 610 610 605 600 0+		A.DE F-C SAND	D5
	636 630 625 615 610 605 600 0+		A.DE F-C SAND	D5
	635 620 615 610 605 600 04		A.DE F-C SAND	D5
	635 620 615 610 605 04		ADE F-C SAND	D5
	635 625 610 615 610 00 01		ADE F-C SAND	D5
	 635 620 615 600 64 600 64 		ADE F-C SAND	D5
			ADE F-C SAND	D5
			ADE F-C SAND	D5
	685 620 615 610 605 600 645		ADE F-C SAND	DE F-C SAND AND GRAVEL
			ADE F-C SAND	VLO F-C SAND M.DE - DE F-C SAND AND GRAVEL
			ADE F-C SAND	25
			ADE F-C SAND	D5
			ADE F-C SAND	05
			ADE F-C SAND	D5
REFERENCE: AFP CARDINAL DRAWING 9415	11038		ADE F-C SAND	D5
REFERENCE: AEP CARDINAL DRAWING 9415 DATUM: NAD 27/NGVD 29 OHIO SOUTH	1038		ADE F-C SAND	D5

		ושכ
4/20/09	▼_ OBS	ER
4/3/09	SEE	PAG
V.SO / S0	O SOF	T / \
M.S	T M. S	TIFI
ST / V.S	T STIF	F/
н	D HAR	D
V.LO / L0	O VER	YL
M.D	E MED	IUN
DE / V.D	E DEN	SE
OR	G ORG	AN

675		(d) d)	Ι		67	′5
670		Ϋ́Ψ̈́Ψ̈́Ψ			670	<u>′0</u>
665		FILL: V.ST - HD SILTY CLAY	8	3	66	i5
660		FILL: M.DE F-C GRAVEL	60- 		66	30
655			AB-C		65	55
650	-	FILL: V.ST - HD SILTY CLAY	C	5	65	50
645	-	FILL: SO - M.ST SILTY CLAY		FILL: V.ST- HD SILTY CLAY		15
640	-				64	10
635		VSO - SO ORG CLAYEY SILT	4/8/09 🤜	SILT / SAND	63	5
630				V.SO ORG CLAYEY SILT	630	
625		V.LO - LO F-M SAND	+	V.SO SILTY CLAY INTERBED	DDED WITH SILT	<u> </u>
620				M.DE F-C SAND	620	20
615		M.DE F-M SAND			615	.5
610					610	.0
605	-				605)5
600					600	
0+00)	1+	-00		2+00	

	90 00		
675		<u>م</u>	675
670	<u>ଟ</u> ିଆ		670
665	ASH POND FILL: M.DE F-C GRAVEL	00	665
660		60-d	660
655	4/8/09 ▽	GRAVEL G	655
650		0	650
645		FILL: V.ST > HD SILT	
640	V.LO - LO SILT		640
635			635
630	V.SO - M.ST ORG CLAYEY	SILT V.SO - SO ORG CLA	630
625		+	625
620			D GRAVEL 620
615	M.DE F-C SAND AND GRAV	/EL	615
610			610
605			605
600			600
0+00		1+00	2+00

LEGEND

- **OBSERVATION WELL READING: ELEVATION AND DATE**
- SEEPAGE ENCOUNTERED DURING DRILLING
- SOFT / VERY SOFT
- M. STIFF
- STIFF / VERY STIFF
- VERY LOOSE / LOOSE
- MEDIUM DENSE
- DENSE / VERY DENSE
- ORGANIC

PROJECT NUMBER: 011-11497-013	DRAWN BY:	RSH
DRAWING DATE: 7-1-09	ENGINEER:	MTR
LAST UPDATED: 7-23-09	APPROVED BY:	MGR
	SCALE:	1" = 20'

G		Н	J	K		M	Ν	0
								2
5 05		675 670 665	Society Societ			675 670 665		
5 5 5 5 5 5		660 ASH POND 660 655 650 645 645 640 635 635	4/8/09 ▼ FILL: M.DE F-C GRAVEL 4/10/09 ▼ FILL: N.DE F-C GRAVEL FILL: V.ST - HD SILTY CLAY FILL: SO - M.ST SILTY CLAY V.LO SILT VSO - SO ORG CLAYEY SILT		6 H H H H H H H H H H H H H H H H H H H	660 655 650 645 640 635		3
5 5 5 5 5		630 625 620 615 610 605	V.LO - LO F-M SAND M.DE F-M SAND		V.SO ORG CLAYEY SILT V.SO SILTY CLAY INTERBEDDED WITH SILT M.DE F-C SAND	630 625 620 615 610 605		
)		<u>600</u> 0+00	SECT Borings BAP-0	⁻ ION 'B' 902 & BAP-0903	2+	<u>600</u> 00		4
			9060					5
5 5 5 5		675 670 665 Y ASH POND 660 655 650	Ho L Ho Ho	VEL	13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14	75 70 65 60 55 50		
5 <u>5</u> 5 5 0 5		645 640 635 630 625 620 615	V.LO - LO SILT V.SO - M.ST ORG CLAYEY SILT M.DE F-C SAND AND GRAVEL		V.SO - SO ORG CLAYEY SILT M.DE F-C SAND AND GRAVEL 62 64 65 65 65 65 65 65 65 65 65 65	45 40 35 30 25 20 15		6
0 5 0		610 605 600 0+00		00 ON 'D'	61 60 60 2+00	10		
			Borings BAP-09	06 & BAP-0907				7
								DATE NO. DESCRIPTION APPD. DATE NO. DESCRIPTION APPD. "THIS DRAWING IS THE PROPERTY OF THE AMERICAN ELECTRIC POWER SERVICE CORP. AND IS LOANED
	4/20/00 -							UPON CONDITION THAT IT IS NOT TO BE REPRODUCED OR COPIED, IN WHOLE OR IN PART, OR USED FOR FUR- NISHING INFORMATION TO ANY PERSON WITHOUT THE WRITTEN CONSENT OF THEAEP SERVICE CORP., OR FOR ANY PURPOSE DETRIMENTAL TO THEIR INTEREST, AND IS TO BE RETURNED UPON REQUEST "
	4/3/09 ▼ 4/3/09 ▽ V.SO / SO M.ST	SEEPAGE ENCOUNTERED DUR SOFT / VERY SOFT M. STIFF	ING DRILLING					A.E.P. CARDINAL PLANT BRILLIANT OHIO BOTTOM ASH POND INVESTIGATION
	ST / V.ST HD V.LO / LO M.DE	STIFF / VERY STIFF HARD VERY LOOSE / LOOSE MEDIUM DENSE						SECTIONS DWG. NO. PLATE 3 scale: CIVIL ENGINEERING
	DE / V.DE ORG	DENSE / VERY DENSE ORGANIC EXISTING WATER SURFACE (AT TIM	ME OF INVESTIGATION)		PROJECT NUMBER: 011-11497-013 DRAWING DATE: 7-1-09 LAST UPDATED: 7-23-09	DRAWN BY: RSH ENGINEER: MTR APPROVED BY: MGR	Columbus (614) 793-2226 Cleveland (216) 901-1000 Cincinnati (513) 771-9471	DR: CH: CH: ENGR: PROJ ENGR: DATE: DATE: AEP SERVICE CORP.
						SCALE: 1" = 20'	Dayton (937) 424-1011	POWER I RIVERSIDE PLAZA COLUMBUS, OH 43215

I U SYSTEM DATE- DD-MMM-YYYY SYSTEM TIME- HOUR:MINUTE

 \mathbb{N}

EXPLANATION OF SYMBOLS AND TERMS USED ON BORING LOGS FOR SAMPLING AND DESCRIPTION OF SOIL

SAMPLING DATA

- Blocked-in "SAMPLES" column indicates sample was attempted and recovered within this depth interval.

- Sample was attempted within this interval but not recovered.
- 2/5/9 The number of blows required for each 6-inch increment of penetration of a "Standard" 2-inch O.D. split-barrel sampler, driven a distance of 18 inches by a 140-pound hammer freely falling 30 inches. Addition of one of the following symbols indicates the use of a split-barrel other than the 2" O.D. sampler:

2S -3S -

- 2¹/₂"O.D. split-barrel sampler

- 3" O.D. split-barrel sampler

- P Shelby tube sampler, 3" O.D., hydraulically pushed.
- R Refusal of sampler in very-hard or dense soil, or on a resistant surface.
- 50-2" Number of blows (50) to drive a split-barrel sampler a certain number of inches (2), other than the normal 6-inch increment.
- S/D Split-barrel sampler (S) advanced by weight of drill rods (D),
- S/H Split-barrel sampler (S) advanced by combined weight of rods and drive hammer (H).

SOIL DESCRIPTIONS

All soils have been classified basically in accordance with the Unified Soil Classification System, but this system has been augmented by the use of special adjectives to designate the approximate percentages of minor components as follows:

Adjective	Percent by Weight
trace	1 to 10
little	11 to 20
some	21 to 35
"and"	36 to 50

The following terms are used to describe density and consistency of soils:

<u>Term (Granular Soils)</u>	<u>Blows per foot</u>
Very-loose	Less than 5
Loose	5 to 10
Medium-dense	11 to 30
Dense	31 to 50
Very-dense	Over 50
Term (Cohesive Soils)	<u>Qu (tsf)</u>
Very-soft	Less than 0.25
Soft	0.25 to 0.5
Medium-stiff	0.5 to 1.0
Stiff	1.0 to 2.0
Very-stiff	2.0 to 4.0
Hard	Over 4.0

Page 1 of 3

LOG OF BORING NO. CD-BAP-0901 CARDINAL PLANT ASH POND INVESTIGATION

Pag	e 1 o	of 3			CA	RDIN	VG OF BORING NO. CD-BAP-0901 VAL PLANT ASH POND INVESTIGATION BRILLIANT. OHIO				3E	BC	\mathbb{X}
LOCA	ATIO	N: S	ee	Plate	2 of	App	endix A ELEVATION: 668.	.7	DATE	:	4/8/09	- 4/9	/09
DRIL	LINC	G MET	ΉО	D:	3-1/4	4" I.I	0. Hollow-stem Auger	C	OMPLE	ETION I	DEPTH:	60).0'
SAM	PLER	L(S):			2'' C).D. S	plit-barrel Sampler 3" O.D. Shelby Tube Sample	er					
EV.	TH, ET	PLE BER	PLE	PLE DRT	0	PLE ?-%	DESCRIPTION	NA1	URAL CO	ONSISTE AL MOIS	ENCY IND STURE CO	EX NTENT	TEST
ELJ	DEF	SAM	SAM	SAM EFF(\mathbf{N}_{60}	SAM REC	DESCRIPTION	$\angle_{\text{PL}}^{\times}$	NSTIC L			т.тмтт	RESULTS
	- 0 -						GRAVEL FILL - 0.9 FEET	1		20	30 4	0	_
667.8			8	2			FILL: Hard gray and brown silty clay, some fine						_
666.2		1		¹³ /8	30	80	to coarse sand, some fine to coarse gravel (sandstone, siltstone, and shale fragments), dry.						H=4.5+
		_	6	5			FILL: Medium-dense to dense brown and gray						
		2	1	⁴ /7	16	67	shale fragments), some fine to coarse sand, "and" silty clay, dry.						H=2.5-3.5
	- 5 -	3		¹² /30	60	100			•				H=2.5
		4	1	13/22/20	60	80							H=4.5+
661.7		_	5	5/10			FILL: Hard gray clayey silt, some fine to coarse						-
660.2		5		10/16	37	93	sand, some fine to coarse gravel (sandstone, siltstone and shale fragments), dry.		•*	<u> </u>	<		H=4.5+
658.7		6	6	⁵ / ₈ / ₁₆	34	87	FILL: Very-stiff brown and gray silty clay, some fine to coarse sand, some fine to coarse gravel (sandstone, siltstone, and shale fragments), dry.						H=3.0-4.0
	- 10-	7	2	24 25/24	70	100	FILL: Medium-dense to dense gray and brown fine to coarse gravel (sandstone, siltstone, and shelp from the coarse gravel (sandstone) and some						H=4.5+
		8	1	10 7	20	67	silty clay becoming "and" clayey silt with depth, dry.						-
		-	8	7 3									-
654.2		¥9 -		⁶ /14	29	73							H=4.5+
	- 15-	10	5	⁵ / _{8/14}	32	80	FILL: Very-stiff to hard brown and gray silty clay, some fine to coarse sand, some fine to coarse gravel (sandstone, siltstone, and shale						H=4.0- 4.5+
		- 11	3	³ / ₅ ,	20	67	fragments), medium-dense gray and brown fine to coarse gravel (shale fragments) seam from						H-3 8-
		-		[′] 9	20		17.5' to 18.3', moist to wet.						4.5+
		12		⁷ 5/10	22	53			•	×	×		G
		12	3	3 _{/9}	26	52							H-4 5
648.2	- 20-	- 13		[/] 9	20	55	Ell L. Modium dance grow fine to second and						-
646.7		14		['] 9 _{/13}	32	67	(shale fragments), little fine to coarse sand, little silty clay, moist to wet.						H=4.5
		15	6	⁵ / ₉	27	80	Medium-dense gray silt, trace clay, trace fine to medium sand, moist to wet.				•		
		_	F	['] 10									G
		16A											-
643.7	25-	WEL.	∇	12	0		SYMBOLS USED TO INDICATE TEST RESU	LTS	 Dri	 Rod	Energy R	Latio :	0.86
WAT	ER N	OTE:		13. Inside	o HSA		G - Gradation See H - Penetrome Q - Uncon Comp Separate W - Unit Dry T - Triax Comp Separate W - Unit Dry	ter (ta Wt (pc:	sf) L	ast Cali	ibration]	Date :	02/17/09
	D	ATE:		4/9/	09		C - Consol. Curves D - Relative	Dens (8)	Drill	Rig Nun	nber : _	TRUCK 55 -

Page	2	of	3
------	---	----	---

LOG OF BORING NO. CD-BAP-0901 CARDINAL PLANT ASH POND INVESTIGATION **BRILLIANT OHIO**

Pag	ge 2 o	of 3		CA	RDIN	VAL PLANT ASH POND INVESTIGATION BRILLIANT, OHIO				31	BC	X
LOC	ATIO	N: S	ee Plate	2 of	Арр	endix A ELEVATION: 668	.7	_ DA1	Е:	4/8/09	- 4/9	/09
DRII	LING	MET	HOD:	3-1/4	4" I.I). Hollow-stem Auger		COMPI	LETION I	DEPTH:	6().0'
SAM		(S): ш थ	шшц	<u>2" C</u>	D.D. S	plit-barrel Sampler 3" O.D. Shelby Tube Sample	er N	ATURAL	CONSISTE	NCY IND	EX	
ILEV.	EPTH	MPL	MPL	09 Z	MPL EC-%	DESCRIPTION	×		WRAL MOIS	TURE CO	NTENT	TEST
	-25-	SA NU	SA SA EF		SA R]	Very stiff brown mottled with gray silty clay	∠ _P	LASTIC	$\frac{1}{20}$	LIQUID	LIMIT	RESULIS
6		16B_	3			trace fine sand, damp.						-
		17	^{'6} /9	22	67							H=2.5-3.5
												-
												_
			3									-
629 7		18	' ³ / ₄	10	100				× •	× *		H=1.6-2.5 G
038.7	- 30-					Gray mottled with dark-gray and brown clayey						_
			P			silt, some fine sand, trace medium to coarse sand, few seams and lenses of silty clay and fine sand						-
		10	Г			damp.			×	-•×		H=1.0-1.5
635.9		19										G
						Very-loose dark-brown and gray organic silt,						_
		20	1^{1}		100	some fine sand, moist to wet.						
		20	2/2	6	100				×	X		-G
633.2	- 35-											-
			2			Soft to medium-stiff gray mottled with dark-gray organic clayey silt, little to some fine sand, trace						_
		21	² /2/2	6	100	medium to coarse sand, few lenses of fine sand					• ×	H=0.4
						moist to wet.						-
												-
		22	2/3/	9	100				×		*•	H=0.5-0.8
	- 40-		/ 3									G
												_
			2									-
		23	2/3	7	67							H=0.3-0.7
625.7												
			9,			Medium-dense to dense brown and gray fine to coarse gravel, some fine to coarse sand. trace silt.						-
		24	11/12	34	53	wet.						
	-45-		13									-
		25	⁹ / _{12,}	40	53							-
			[/] 16									
												-
			11									
		26	^{'19} /20	56	53							-
WAT	∟ 50- ER LF	VEL:	∑ <u>1</u> 3	.8	⊥ 	SYMBOLS USED TO INDICATE TEST RESU	JLTS		orill Rod 1	Energy I	Ratio : _	0.86
WAT	TER N	OTE:		HSA /09		Q - Uncon Comp Separate H - Penetrome T - Triax Comp Courses D - Relative	ecer (Wt (p Dens	LSI) cf) (%)	Last Cali	bration Rig Nur	Date : _	02/17/09 TRUCK 55
	D	AIE:		<i></i>		C - Consol Curves _ 5 Relative		. ~ /	DUII		moet : _	INUCA 33

JOB: 011-11497-013

-CONTINUED-

Page 1 of 3

LOG OF BORING NO. CD-PZ-BAP-0902 CARDINAL PLANT ASH POND INVESTIGATION BRILLIANT, OHIO

LOG OF BORING NO. CD-PZ-BAP-0902 CARDINAL PLANT ASH POND INVESTIGATION **BRILLIANT, OHIO**

Pag	ge 2 c	of 3		CA	LO RDIN	G OF BORING NO. CD-PZ-BAP-0902 NAL PLANT ASH POND INVESTIGATION BRILLIANT, OHIO				BE	BC	N
LOC	ATIO	N: S	ee Plate	2 of	App	endix A ELEVATION: 668	.0	DATE	2:	4/	8/09	
DRIL	LINC	G MET	HOD:	4-1/4	4'' I.I	0. Hollow-stem Auger		COMPLE	ETION D	EPTH:	60	.5'
SAM	PLER	R(S):		2'' C).D. S	plit-barrel Sampler						
EV.	PTH,	IPLE IBER	IPLE IPLE ORT	Q	C-%	DESCRIPTION	NA	TURAL C	ONSISTE AL MOIST	NCY IND	EX NTENT	TEST
EL	EDE	SAN	SAN SAN EFF	ž	SAN RE(DESCRIPTION	$\angle_{_{\rm PL}}^{\times}$	ASTIC L	$_{\rm imit}$ \angle	.X LIQUID	LIMIT	RESULTS
	- 25-	17	1 / ₁	4		Very-soft to soft gray mottled with dark-gray		10 1	20 3	0 4	10	u_0 3
		1/	¹ /2	4	80	organic silt near bottom of stratum, wet.						11-0.5
		10	SН									LOI=10.49
		18	¹ /2	4	80						>>	H=0.0-0.1 G
		_	sн									MC=54
		19	¹ / ₂	4	100						•	G
	- 30-											
	50											
		20	SH	2	72							
		20	1/1	3	15					~•		G
			2									
633.1	- 35-	21A	[/] 3 _/ 2	9		X7 1 1 1 1 (* .						
		21B	3			wery-loose to loose brown and gray line to medium sand, trace coarse sand, trace to little silt interbedded with organic clayey silt, wet.						
			2									
		22	² / ₃	7	73				•			G
			SH									
	40-	23	¹ /1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/	4	80				•			
(27.0	40		2									G
627.0						Medium-dense brown fine to medium sand, trace						
			2/2	10	100	coarse sand, trace silt, trace to some fine gravel,						-
		24	³ / ₁₀	19	100	frace coarse graver, frace sift, wet.						G
												1
		25A	5	26								
	-45-	25B	⁷ 7 _{/11}									
			11									
		26	6 / 10	33	67							
		20	13	55	07							
				10								
			10	-+0								
	50-	27	13/13		33	פעאאבטניג נופצט גע געער גערע איז איז איז איז איז איז איז איז פא פאנער פאנער איז איז איז איז איז איז איז איז איז	ILTS]
WATH WAT	ER LE FER N	EVEL:	$\frac{\underline{\vee}}{10.}$ Inside	<u>.7</u> HSA		8.4 G - Gradation See H - Penetrome Inside Well Q - Uncon Comp See H - Penetrome	eter (t	$\frac{\text{Dr}}{\text{sf}}$	ill Rod E .ast Calil	nergy F bration	Katio: <u>(</u> Date:().86)2/17/09
	D	ATE:	4/8/	09		4/10/09 T - Triax Comp Soparate W - Unit Dry C - Consol. Curves D - Relative	Dens (*) *)	Drill	Rig Nur	nber :	FRUCK 55
IOB	011-1	1497-0	13			-CONTINUED-				Р	LATE	

Page	1	of	2
------	---	----	---

LOG OF BORING NO. CD-BAP-0903 CARDINAL PLANT ASH POND INVESTIGATION BRILLIANT, OHIO

Pag	ge I (of 2			CA	RDIN	VAL PLANT ASH POND INVESTIGATION BRILLIANT, OHIO				BE	BC	N
LOC	ATIO	N: _	See	Plate	<u>2 of</u>	Арре	endix A ELEVATION: 650	.1	DATE:		4/	8/09	
DRII	LINC	G ME	ГНС	DD:	3-1/4	'' I.C	0. Hollow-stem Auger	C	COMPLE	TION D	EPTH:	30	.0'
SAM	PLEF	R(S):			2'' 0).D. S	plit-barrel Sampler 3" O.D. Shelby Tube Sample	er					
EV.	ETH,	IPLE IBER	IPLE	IPLE ORT	9	C-%	DESCRIPTION	NA	NATURAL CO	NSISTER L MOIST	NCY INDI TURE CON	EX ITENT	TEST
EL	DEI	SAM	SAM	SAM EFF	ů	SAM	DESCRIPTION	$\angle_{_{\rm PL}}^{\times}$	ASTIC LI		X LIOUID	LIMIT	RESULTS
649.7	- 0 -					-	TOPSOIL - 0.4 FEET		10 2	0 3	0 4	0	-
		-		2			FILL: Very-stiff to hard brown mottled with gray and dark-brown silty clay trace fine to						
		1		5	15	67	medium sand, few roots, damp.						H=3.6-3.8
		-		6									
		2		⁴ /6,	16	53				•		——————————————————————————————————————	H=3.3-4.5
646.1		_		⁷ 6	10								G
		2		2/5	1.5		FILL: Very-stiff to hard brown mottled with						11.06.4.1
	- 5 -	5		³ / 6	15	80	gray sinty cray, trace time sand, damp.						H=2.6-4.1
				8,									
<i>c</i> 12 1		4		'11 _{/13}	33	80							H=4.5
643.1				6,			FILL: Very-stiff to hard brown mottled with						
6/1 0		5		[′] 6 _/	16	67	dark-gray and gray silty clay, little fine to coarse				—×		H=3.5-4.5
041.8		-		5		-	sand, trace fine gravel, few lenses of dark-gray						0
		6		⁶ / ₆	16	67	Medium-stiff dark-gray organic clayey silt, trace				×	×	H=0.6
	- 10-			⁷ 6			fine sand, many lenses of fine sand, few decayed						G
	10	-					roots, damp to moist.						
		-	П	Р									
		-											
636.6		-	Н										
050.0				sң			Very-soft gray mottled with dark-gray organic						
		7		′ 1 / 1	3	67	clayey silt interbedded with organic silt, little fine					•	H=0.0 G
	- 15-	-		1			moist to wet.						
		₽_		SH	2	C7							
	<u> </u>	8		1	3	0/				×	×		G G
		1											1
				sн									-
Ì	<u> </u>	9		1,	3	73				×		•	H=0.0
Ì	- 20-			[′] 1									G
629.6	20	-					Vor ant one alter alor interior de						-
		-		1,			trace fine sand, few seams of fine sand, few roots.						
Ì		10		′2 _{/ 4}	8	60	moist to wet.			×	*		H=0.2
627.6			Ħ	4			Medium-dense brown and gray fine to coarco						
							sand, trace medium to coarse sand, trace fine to						
]		2			coarse gravel, little silt, few seams of silty clay,]
Ì	<u> </u>	11		⁴ / 7	15	47	wei.						G
WATI	⊢25- ERIF	EVEL	. <u>V</u>	16	5	Ţ	SYMBOLS USED TO INDICATE TEST RESU	LTS	Dri	ll Rod E	nergy R	Latio : ().82
WAT	TER N	OTE	_	Inside	HSA		Q - Uncon Comp T - Triax Comp Separate W - Unit Dry	ter (t Wt (pc	sf) La	ast Calil	oration 1	Date : _1	1/19/07
	D	ATE:	017	4/8/	09		C - Consol. Curves D - Relative	Dens (*)	Drill	Kig Nun	1ber : <u>1</u>	050

OCA	TION	N: S	ee	Plate	<u>2 of</u>	Арр	endix A ELEVATION: 650	0.1		DAT	E:			4/8/09	- 🔳
RIL	LING	MET	HC	DD:	3-1/4	•" I.I). Hollow-stem Auger		C	OMPL	ETI	ION E	DEPTH	l: <u>3</u>	0.0'
AMI	PLER	(S):			2'' C	D.D. S	plit-barrel Sampler 3'' O.D. Shelby Tube Sampl	ler							
	TH,	PLE BER	PLE	PLE JRT	_	PLE -%			NAT	URAL —NATU	CON: RAL	SISTE MOIS	NCY II TURE (NDEX CONTENT	Т
	DEP	SAM	AM	SAM EFFC	\mathbf{N}_{60}	REC	DESCRIPTION		.×	•		/	<u> </u>		RES
1.6	-25-	ωZ	01	<u>v</u> <u>n</u>		<u>v</u>			1	0	20	<u> 11 –</u>	<u>- LIQU</u> 30	40	
-		12		⁶ /10/12	30	33	Medium-dense brown and gray fine to coarse gravel, some fine to coarse sand, trace silt, wet.								
-		10	,	7 _{/7/7}	10	17									-
.1	- 30-	13		,	19	47									-
							 Seepage encountered at 13.5'. Groundwater encountered at 22.5'. At 26.0', 1.8' heave, shook augers to sample 								_
-							 Borehole grouted upon completion. Boring location and elevation surveyed by AEP. 								-
	- 35-														-
	40														_
	40-														_
															-
	- 45-														
															-
	- 50-														_

Page	1	of	3
------	---	----	---

LOG OF BORING NO. CD-PZ-BAP-0904 CARDINAL PLANT ASH POND INVESTIGATION BRILLIANT OHIO

Pag	e 1 c	of 3		CA	RDIN	NAL PLANT ASH POND INVESTIGATION BRILLIANT, OHIO				3 [:	BC	X
LOCA	ATIO	N: S	ee Plate	2 of	Арр	endix A ELEVATION: 668.	.1	DATE:	:	4	/7/09	
DRIL	LINC	6 MET	HOD:	4-1/4	4" I.I	D. Hollow-stem Auger	_ (COMPLE	TION D	EPTH:	6).0'
SAM	PLER	(S):		<u>2" C</u>).D. S	plit-barrel Sampler 3" O.D. Shelby Tube Sample	er					
EV.	ETH,	IPLE IBER	IPLE IPLE ORT	Q	C-%	DESCRIPTION	NA	NATURAL CO	NSISTEN L MOIST	NCY INE TURE CO	DEX NTENT	TEST
EL	DE	SAN NUN	<u>SAN</u> SAN EFF	Ž	SAN RE(DESCRIPTION	$\angle_{_{\mathrm{PL}}}^{\times}$	ASTIC LI		X	LIMIT	RESULTS
	- 0 -					GRAVEL FILL - 1.0 FEET		10 2	20 3	0 4	40	_
667.1			6,			FILL: Very-stiff to hard brown and gray silty						-
		1	⁷ 6 ₇	20	100	clay, some fine to coarse sand, some fine to						H=4.25-
		-	ه 			fragments), fine to coarse gravel seams near						4.5+
		2	°′8,	27	53	middle of stratum, dry.						H=4.5+
		_	·11									
		3	⁹ / ₁₁	33	93							H=3.5-4.0
	- 5 -	_	/12									
		4	12/ 15	16	7							-
		4	17	40	/							-
		_	12		1.0							
		5	⁸ /8	23	13							-
		-	2									H=2.75-
650.1		6	^{' 8} / ₁₇	36	80			•×	—×			3.5 G
658.1	- 10-	-	20,			FILL: Very-dense brown and gray fine to coarse						-
656.6		7	50-3"R		33	gravel (sandstone, siltstone, and shale fragments), little fine sand, trace silt, dry.						_
655.9		8A	13	44		FILL: Dense brown and gray fine to coarse						
		8B	14/17			gravel (sandstone fragments), cobbles, "and" fine to medium sand, trace coarse sand, trace silt, dry.						H=4.5+
		-	3			FILL: Hard brown with gray silty clay, little to						
		9	′ ⁵ /9	20	73	some fine to coarse sand, trace fine gravel, dry.		•	×	X		H=2.5-40
	- 15-	-	5									
652 1		10	⁶ /7	19	80							H=3.0-
052.1		¥ _	4			FILL: Medium-dense brown and gray fine to						
		11	^{'6} /12	26	60	coarse gravel (very-soft shale fragments), some fine to coarse sand, some silty clay, cobbles						G
		124	4,	20		damp.						-
		12A	′6 _{/ 0}									
649.1		12 D	2			Loose gray and dark-gray organic silt little clay						-
	_ 20_	13	⁻ /2	6	87	little to some fine to medium sand, wet.			•			
	20		2									-0-
		14	² / ₃ ,	10	47							-
646.1		_	4									1
		15	SН 1		47	Very-loose gray and dark-gray fine to medium sand trace coarse sand little fine gravel some						-
644.6		15	2		+/	organic silt, wet.						G
		1.2	SH			Very-loose gray silt, little clay, little fine sand,						
		16	SH SH	0	53	wei.						-
WATE	- 25- Er le	EVEL:	<u>⊻</u> 16	.0	Ţ	15.9 SYMBOLS USED TO INDICATE TEST RESU	LTS	Dri	ll Rod E	nergy l	Ratio : _	0.86
WAT	ER N	OTE:		HSA /09		Inside Well Q - Uncon Comp See H - Penetrome 4/10/09 T - Triax Comp Separate W - Unit Dry	Wt (pc Deng /	$\mathbf{L}_{s}^{(SL)}$	ast Calib	oration Rig Nur-	Date : _	02/17/09
	D	AIE:	<u>_</u> _//	J		C - Consol Curves D - Kelative		57	ווויוע			<u>1 NUUN 33</u>

Page 2 of 3

LOG OF BORING NO. CD-PZ-BAP-0904 CARDINAL PLANT ASH POND INVESTIGATION BRILLIANT OHIO

Pag	e 2 c	of 3		CA	RDIN	AL PLANT ASH POND INVES BRILLIANT. OHIO	TIGATION	1			3E	BC	X
LOC	ATIO	N: S	ee Plate	<u>2</u> of	Арро	endix A E	LEVATION:	668.1	DATE	3:	4/	7/09	
DRIL	LINC	6 MET	HOD:	4-1/4	4'' I.I). Hollow-stem Auger			COMPL	ETION E	DEPTH:	60	.0'
SAM	PLER	(S):		2'' C).D. S	plit-barrel Sampler 3" O.D. She	lby Tube Sa	mpler					1
EV.	PTH, ET	IPLE IBER	IPLE IPLE ORT	9	IPLE C-%	DESCRIPTION			NATURAL C	CONSISTE	NCY INDI TURE CON	EX ITENT	TEST
EL	DEI	SAM NUM	<u>SAM</u> SAM EFF	Ž	SAM REC	DESCRIPTION		2	PLASTIC I	$_{\rm IMIT}$ \angle	-LIOUID	LIMIT	RESULTS
	- 23-	17	SR		52	Very-loose gray silt, little clay, lit	tle fine sand	,	10	20	30 4	0	_
641.6		1/	3	4	53	wet.							G
		-	ѕн			Medium-stiff to stiff gray mottled	with dark-g	ray					-
640.1		18	¹ /3	6	100	organic clayey silt, interbedded w little fine to coarse sand, trace fin-	ith organic s e gravel, wet	1lt,		×			H=0.75- 9.25
0.011		-	1			Very-soft to soft gray mottled wit	h dark-gray						-
		19	¹ / ₃	6	87	organic clayey silt, trace fine sand	l, wet.				*	$\times \bullet$	H=0.0-0.5 G
638.1	20												-
	- 30-					Loose to medium-dense brown ar	d gray fine t	0	· · · · · · · · · · · · · · · · · · ·				-
			Р			silt, few seams of gray mottled wi	ith dark-gray						-
						silty clay near bottom of stratum,	contains zon	les					-
						interbedded with sitt, wet.							-
		20A	⁵ / ₅	17									-
	25	20B	7										-
	- 35-												-
			2										_
		21	⁻ /3,	11	93								
			5										6
													-
			2										
		22	² / ₅	10	100							· · · · ·	-
	- 40-												-
			2										-
		23	² /2,	10	100								-
			[′] 5										-
													-
			2 ,										
		24	^{'8} / ₁₂	29	100								-
	- 45-		12										-
													1
621.4		25A	4 / ₁₁	40									-
		25B	17			Medium-dense brown and gray fi	ne to coarse	et 👘					
						Staren, una mie to course salla,							-
619.1			12,										-
		26	²⁹		93	See description on the following	page.						
	50-		30-5°R			SYMBOLS USED TO	INDICATE TEST	RESULT	5 	ill Dod 1	Enorar D	atio • 4	0.86
WATE WAT	ER LE ER N	VEL: OTE:	$\frac{\pm 16}{\text{Inside}}$.0 HSA		Inside Well G - Gradation Se G - Uncon Comp Separ	e H - Pene cate W - Unit	tromete Dry Wt	r (tsf) (pcf) I	Last Cali	bration l	Date : _(02/17/09
	D	ATE:	4/7/	/09		4/10/09 T - Triax Comp C - Consol. Curv	ves D - Rela	tive De	ns (%)	Drill	Rig Nun	ber : _	FRUCK 55
IOB.	011 1	1407 (13			-CONTINUED-					PI	ATE 1/	1

JOB: 011-11497-013

-CONTINUED

Page 1 of 3

LOG OF BORING NO. CD-BAP-0906 CARDINAL PLANT ASH POND INVESTIGATION BRILLIANT, OHIO

JOB: 011-11497-013

-CONTINUED

PLATE 18

JOB: 011-11497-013

-CONTINUED-

PLATE 19

LOG OF BORING NO. CD-BAP-0907 **CARDINAL PLANT ASH POND INVESTIGATION BRILLIANT, OHIO**

-CONTINUED-

Appendix II – 2009 & 2015 Laboratory Testing Results

							,		í	5	À L	1 2 2	5		2		L C	<u>0</u>								
						Ğ	TADATIC	N	OMPA	CTION	TRL	AXIAL	DIR	ECT SH	EAR L] C	SA Da	NC MH	R T	ERM	EABIL			Γ	SH SH	s-
	:						Hydroi	neter	t s	Eor	n n n n	u w d	чq	3 G)ZvC)ZvC	-42)- -01		 1≥0-	по 0 Г	ŗ w 1 ą	l a L Tay		0 -	i T T	- 670
BORING	G'ınt Id.	MC	TT	PL	Id	∞ o > o	хдогт	0 H O H	מ בים מ אים	5-4-00	n s s s s s s s s s s s s s s s s s s s	derec serpo	¢-500	ם - מ - ם			-4-7- -4-7-				cœ					o nado
ſ		%	%	%	%			* SEE	NDIV		L TEST		VES		- ·	-		PCF		s s		_ >	%	%	ц	x
CD-BAP-1501	4.75					*													-							
CD-BAP-1501	9.25					*																				
CD-BAP-1501	12.25	13.9	22	14	×																					
CD-BAP-1502	6.25	9.1	27	16	11	*		*																		
CD-BAP-1502	11.25	8.9	21	14	٢				<u> </u>																	
CD-BAP-1502	17.75	12.7	26	16	10	*		*																		
CD-BAP-1502	20.00																								*	
CD-BAP-1502	24.25	22.4																								
CD-BAP-1502	32.50																								*	
CD-BAP-1502	40.75					*																				
CD-BAP-1504	6.25	9.4																								
CD-BAP-1504	10.75					*																				
CD-BAP-1504	12.25	11.6				*																				
CD-BAP-1504	17.25	18.2																								
CD-BAP-1505	9.25	11.6																								
CD-BAP-1505	10.40	19.0																								
CD-BAP-1505	13.75	10.4																								
CD-BAP-1505	15.25	18.3				*																				
S	85N	JE		L '	IESTI	NG S	UMMA	RY - S	TANE	ARD		PROJ LOCA JOB N	ECT TION	A A	0TTO 217-15	M ASH CA		ND SU	ANT	BRI	NTAL	INVES IT, OH 12/30	STIGA I /15	NOIT		

PLATE 1

					ł	ภี		RY		ABO	RATC	ORY 		ST R	ESU	רד יין דג		-			; ; ;	,	,	
				!	GR	ADATION	CON	1PACTI	NO	TRIAX	IAL	DIREC	T SHE			<u>م</u> لام محر	×= ≥=-	E	RME/	ABILIT			205	N T T
						Hydrome	ter ter	100	n a c	n n n n n	, rd	טים	= = = = = = = = = = = = = = = = = = =		zvO zvO		ב0⊒ דט− ב	202	цо;	a Tev			2 Z	ы <u>–</u> а
MC LI	LI		PL	Id	∽-0>0	v∓or+	-0100 -0100		, v B O C	о с с с с с с с с с с с с с с с с с с с	z- a o.⊐	ם-ב הם	5-8-5					= o ∞ - > o	ವ–ುಂಗಂ ವ–ುಂಗಂ			- - -	COKE	
%	10.	~	%	%	,	*	SEE INI			TEST CI	URVE	- N	_				CF)	s s	<u>،</u>	%	%		<u>~</u> щ
5.0		25	16	6	*		*						-											
4.3		43	21	22																				
																								*
					*																			
					*																			
2.8	i.	30	17	13	*		*																	
0.3	1	30	18	12																				
	1																							*
6.6		48	26	22	*		*															5.9		
																								*
																								*
7.6																								
					*																			
					*																			
			Τ	ESTIN	∖G SI	JMMAR	Y - STA	INDAI	RD	ξ 7 6	ROJEC	NO I	B0 721	17-15-0	ASH CAR 007A	PONI	L PLA	PLEI NT, E	MENT	LIANT,	VESTI OH 2/30/15	GATIC	z	
		—								;								Ś	l I		- - 			

ALPI-REG

ALPI-REG

		· · ·			
S&ME		Sample :	Recovery :		SL - Shrinkage Limit POR - Porosity UDW - Unit Dry Weight MC - Moisture Content D _R - Relative Density S - Sieve
	S	Boring :	Depth : F		 Hand Penetrometer (tsf) Direct Shear Loss on Ignition Atterberg Limits Sieve/Hydrometer Specific Gravity
SUPPLEMENTAL INVESTIGATION RILLIANT, OH	ABORATORY LOG OF SHELBY TUBE	Boring : CD-BAP-1502 Sample : ST-2	Depth : 32.5' to 34.5' Recovery : 19.50"	0 -	Compression MA - Triaxial AL - Compression MA - Triaxial AL - Compression MA - Triaxial AL - SG - Triaxial AL - SG - Test SG - SG
NUMBER : 7217-15-007A PROJECT : BOTTOM ASH POND 5 DCATION : CARDINAL PLANT, BI		D-BAP-1502 Sample : ST-1	.0' to 22.0' Recovery : 7.00"	disturbed - discarded r Very-stiff to hard yellow-brown mottled with brown silty clay, some fine to coarse sand, little fine to coarse gravel (shale fragments). Tube damaged - cut - discarded NOTE: both sections have wax down one side NOTE: both sections have wax down one side	 Consolidation, Enclosed Swelling, Test Consolidation, Carlo Swelling, Test Consolidation, Carlo Swelling, Test Permeability, Carlo Swelling, Carlo Swelling, Test
		Boring : CI	Depth : 20.	0	C R S

2009 SITE INVESTIGATION

GRADATION TRIAXIAL DIRECT SHEAR U C C S G U W R PERMEABILITY R D L																														
DI //6						GI	RADATI	ON	COMP	ACTION	1	RIAX	[AL	DIRE	ECT SI	HEAR	UCNO	C i	S G	U W N E	R	PE	RME	ABI	LITY	R D E E	L	R	S H	С
BORING	G'int Id.	MC	LL	PL	ΡI	s i e v e	Hydro s h o r t	ometer l o n g	s t n d a r d	m o d f i e d	u u n n c d o r n a s i . n	c u w o n / n d p s r o o a p l i r i n e d s	d r a i n e d	d r a i n e d	u n d r a i n	r e s i d u a l	COP NRES NS	N I S O L I D O ·	E A V I I F T I Y	T G T G H D T R Y	M O L D E D	c o h e s i v e	n n c o h e	rw gl 11	$\begin{array}{c} f & w \\ 1 & a \\ e & 1 \\ x & 1 \\ i \\ b \\ l \\ e \end{array}$	L N AT S I T V E	O I	Č K C O R E	E B Y T U B E	B R
ž 1117		%	%	%	%			* SEI	e indi	VIDUA	AL TH	EST C	URV	ES						PCF			8			%	%			
BAP-0901	4.75	16																												
BAP-0901	7.75	16	28	18	10																									
BAP-0901	13.75	13	27	17	10																									
BAP-0901	18.25	14	37	24	13	*		*																						
BAP-0901	22.75	30	NP	NP	NP	*		*																						
BAP-0901	24.50																												*	
BAP-0901	29.25	27	37	22	15	*		*																						
BAP-0901	31.25											*																		
BAP-0901	31.75	33	35	28	7	*		*				*																	*	
BAP-0901	32.25											*																		
BAP-0901	34.25	42	34	27	7	*		*																						
BAP-0901	36.75	40	45	29	16	*																								
BAP-0901	39.25	42	40	23	17	*		*																						
BAP-0902	2 6.25	13	27	17	10	*		*																						
BAP-0902	2 10.75	20																												
BAP-0902	2 12.25	10	26	17	9	*		*																						
BAP-0902	2 16.75	24	37	19	18																									
BAP-0902	2 18.25	21	35	17	18	*		*																						
BAP-0902	2 19.75	31	29	17	12	*		*																						
BAP-0902	2 21.25	26	NP	NP	NP	*		*																						
			A	TESTING SUMMARY STANDARD															CA	RDINA	AL PI	_AN BRI	T ASH	H PO	ND IN OHIO	VESTI	GATIO	N		_
			СП		TESTING SUMMARY - STANDARD							JOB	NO.	011	-114	197 -	-013		D	ATE		7	/6/09			_	-			

GRADATION COMPACTION TRIAXIAL DIRECT SHEAR U.C. C. S.G. U. W. R. PERMEABILITY R. D. L< R.																													
DT 7/6						GF	RADATION	COMPA	ACTION	[FRIAXI	AL	DIRI	ECT S	HEAR	UCNO	C I	S G P R	U W N E	R	PE	RM	EABI	LITY	R D E E	L	R	S H	С
BORING	G'int Id.	MC	LL	PL	PI	s i e v e	$\begin{array}{c c} Hydrometer\\\hline S & l\\ h & 0\\ o & n\\ r & g\\ t \\ \end{array}$	s t n d a r d	m o d i f i e d	uu nn cd or na si . n	c u w o n / n d p s r o o a p l i r i n e d s	d r a i n e d	d r a i n e d	u n d r a i n	r e s i d u a l	COP ORE INS	NSOL ID ·	È À C V I I F T I Y C	I I T G H D T R Y	MOLDED	c b e s i v e	n o n c o h e	r w i a g l i l d	$ \begin{array}{c} f & w \\ l & a \\ e & l \\ x & l \\ i \\ b \\ l \\ e \end{array} $	L N A S T I V Y E	O I	С К С О R Е	Ë L B Y T U B E	B R
1117		%	%	%	%		* SEI	e indi	VIDUA	L TH	EST C	URV	ES						PCF			s			%	%			
BAP-090	2 22.75					*																							
BAP-0902	2 27.25	54	NP	NP	NP	*	*																			10.4			
BAP-0902	2 28.75	43	NP	NP	NP	*	*																						
BAP-0902	2 32.25	38	36	28	8	*	*																						
BAP-0902	2 37.25	22				*	*																				\square		
BAP-0902	2 39.75	24				*	*																				\square		
BAP-0902	2 42.25					*																							
BAP-090.	3 3.25	24	48	24	24	*	*																						
BAP-090.	3 4.75	22																											
BAP-090.	3 7.75	20	36	20	16	*	*																						
BAP-090.	3 9.25	49	41	38	3	*	*																						
BAP-0903	3 14.25	43	NP	NP	NP	*	*																						
BAP-090.	3 16.75	43	37	24	13	*	*																						
BAP-090.	3 19.25	44	35	24	11	*	*																						
BAP-0903	3 21.75	35	34	21	13	*	*																						
BAP-0903	3 24.25					*																							
BAP-0904	4 4.75	13																									\square	1	
BAP-0904	4 9.25	14	25	16	9	*	*																					1	
BAP-0904	4 13.75	16	35	21	14																						\square	\uparrow	
BAP-0904	4 16.75					*																					\square	1	
			Л			TEST		PROJECT CARDINAL PLANT ASH POND INVESTIGATION																					
	DV ons To E		С м			1691	ESTING SUMMARY - STANDARD							JOB	NO.	011	-114	497-	013		D)AT	Ε_	7	/6/09			_	_

ATE 2

60/0							S	SUM	MAR	YOF	F LA	BO	RA ⁻	ΓOF	RY -	TES	TR	ES	SUL	TS										
DT //						GF	RADATI	ON	COMPA	ACTION	1	FRIAX	IAL	DIRI	ECT S	HEAR	U C N O	S	S G P R	U W N E	R	PE	RM	EABI	LITY	R D E E	L	R	S H	С
BORING	G'int Id.	MC	LL	PL	PI	s i v e	Hydro s h o r t	l o n g	s t n d a r d	m o d f i e d	u u n n c d o r n a s i . n	c u w o n / n d p s r o o a p l i r i n e d s	d r a i n e d	d r a i n e d	u n d r a i n	r e s i d u a l	C M O P N R F E S N S	NSOLID.	E A C V I I F T I C	I I T G H D T R Y	M O L D E D	c o h e s i v e	n o n c o h e	r w i a g l i l d	$ \begin{array}{c} f \\ w \\ l \\ e \\ i \\ k \\ l \\ b \\ l \\ e \end{array} $	L N A S T I V Y E	O I	C K C O R E	E B Y T U B E	B R
1114		%	%	%	%			* SEI	e indi	VIDUA	L TI	EST C	URV	ES						PCF			s			%	%			
BAP-0904	19.75	28	NP	NP	NP	*		*																						
BAP-0904	22.75	26	NP	NP	NP	*		*																						
BAP-0904	25.75	22	NP	NP	NP	*		*																						
BAP-0904	27.25	38	38	24	14	*		*																						
BAP-0904	28.75	47	42	30	12	*		*																						
BAP-0904	36.75					*																								
BAP-0905	5 4.75	17	32	18	14	*		*																						
BAP-0905	5 7.75	22	48	24	24																									
BAP-0905	5 9.85	33				*																								
BAP-0905	5 14.25	45	43	27	16	*		*																			8.4			
BAP-0905	5 16.75	42	40	25	15	*		*																						
BAP-0905	5 21.75	38	38	23	15	*		*																						
BAP-0905	5 26.75					*																								
BAP-0906	5 2.90	11																												
BAP-0906	6 4.75	15	27	17	10																									
BAP-0906	5 12.75					*		*																						
BAP-0906	5 17.25	14	31	19	12	*		*																						
BAP-0906	5 24.75	31	NP	NP	NP	*		*																						
BAP-0906	5 26.25					*																								
BAP-0906	5 27.25	22	NP	NP	NP	*		*																						
					TESTING SUMMARY - STANDARD												PROJECT CARDINAL PLANT ASH POND INVESTIGATION													
			Д	TESTING SUMMARY - STANDARD JOB NO. 011-11												497	-013			DAT	Έ_	7	/6/09			_	—			

(S	SUM	MAR	Y OF	F LA	BO	RA ⁻	FOR	Y 1	ſES	TR	ES	SUL	TS										
						GR	RADATI	ON	COMPA	CTION	1	FRIAXI	AL	DIRE	CT SI	HEAR	U C N O	S	S G P R	U W N E	R	PE	RM	EABI	LITY	R D E E	L	R	S H	С
BORING	G'int Id.	MC	LL	PL	PI	s 1 e V e	Hydro s h o r t	l o n g	s t n d a r d	m o d i f i e d	u u n n c d o r n a s i . n	c u w o n / n d p s r o o a p l i r i n e d s	d r a i n e d	d r a i n e d	u n d r a i n	r s i d u a l	C P R E S S	N SOL D ·	E A C V I T F T C	I I T G H D T R Y	M O L D E D	c o h e s i V e	n o n c o h e	rw ia gl 11 d	$ \begin{array}{c} f \\ w \\ l \\ e \\ i \\ x \\ l \\ b \\ l \\ e \end{array} $	L N A S T I V Y E	0 I	C K O R E	E B Y U B E	B R
		%	%	%	%			* SEI	E INDI	VIDUA	L TH	EST C	URV	ES						PCF			s			%	%]		
BAP-0906	5 31.75	34	33	22	11	*		*																						
BAP-0906	5 34.25	43	50	30	20	*		*																			7.9			
BAP-0906	6 36.75	38	43	26	17	*		*																						
BAP-0906	6 44.25					*																								
BAP-0907	3.25	21																												
BAP-0907	6.25	15																												
BAP-0907	7.75	23	49	26	23																									
BAP-0907	9.25	28	47	29	18	*		*														*			*				*	
BAP-0907	/ 11.75					*		*																						
BAP-0907	14.25	43	44	28	16	*		*																						
BAP-0907	16.75	44	45	29	16	*		*																						
BAP-0907	19.25	40	48	29	19	*																								
BAP-0907	21.75	39	30	24	6	*		*																						
BAP-0907	26.75					*																								
																														_
					PROJECT												CARDINAL PLANT ASH POND INVESTIGATION													
	SG Ins To E		Л Ом		TESTING SUMMARY - STANDARD LOCATION BRILLIANT, OHIO JOB NO. 011-11497-013 DATE 7/6/0									/6/09			_													

LPI-REG 111497013.GPJ BBCM.GDT 7/6/09

ALPI-REG 111497013.GPJ BBCM.GDT 7/6/09

ALPI-REG 111497013.GPJ BBCM.GDT 7/6/09

ALPI-REG 111497013.GPJ BBCM.GDT 7/6/09

JOB NUMBER : 011-11497-013

67

PROJECT : CARDINAL PLANT ASH POND INVESTIGATION

LOCATION : BRILLIANT, OHIO

LABORATORY LOG OF SHELBY TUBES Boring : CD-PZ-BAP-0901 Boring : CD-PZ-BAP-0901 Sample : 19A Boring : CD-PZ-BAP-0906 Sample : 16A Sample : 6A Depth : 23.5' to 25.3' Depth : 31.0' to 32.8' Recovery : Depth : 8.5' to 9.4' 0.00" Recovery : 21.00" 20.50" Recovery : 0 0 0 Severly Damaged - Could Not Extrude VOID VOID 1////// OUT disturbed - discarded OUT disturbed - discarded Gray silt, trace clay, trace fine to medium Gray mottled with dark-gray and brown SAVE I 12 I 12 clayey silt, some fine sand, trace medium 12 sand. to coarse sand, few seams and lenses of silty clay and fine sand. Π SAVE Π 111/24 -SAVE **III**²⁴ 24 Stiff gray mottled with brown silty clay, trace fine to medium sand, many lenses $f_{a:1t}$ H=1.8 IV JAR IV JAR H=1.2 ∖of silt. _____ mm 36 36 36 NOTE: AL/MA on representative sample. 30.00" tube 30.00" tube LEGEND H - Hand Penetrometer (tsf) SL - Shrinkage Limit Swelling, - Consolidation, Wax Ds - Direct Shear POR - Porosity Incremental Test LOI - Loss on Ignition UDW - Unit Dry Weight RS - Consolidation, PLATE CRS AL - Atterberg Limits MC - Moisture Content Unconfined - Triaxial Compression Compression MA - Sieve/Hydrometer - Relative Density Permeability, DR Test Test Vertical / Horizontal SG - Specific Gravity S - Sieve

JOB NUMBER : 011-11497-013

PROJECT : CARDINAL PLANT ASH POND INVESTIGATION

LOCATION : BRILLIANT, OHIO

LABORATORY LOG OF SHELBY TUBES

TUBE LOG 111497013.GPJ BBCM.

Checked By: JJ

PERMEABILITY TEST DATA AND COMPUTATION SHEET BBCR

((ASTM D-5084) FALLING HEAD, METHOD C)

Job Number:	011.11437.			Date.	5/0-1/200	9		initiani Dry Density.	
Project Name:	Cardinal A	sh Pond Inve	estigation	Boring:	CD-PZ-B	AP-0907	Optimum	Moisture Content:	
Project Location:	Brilliant, O	hio		Sample:	ST-6A S	Sec. II		% Compaction .:	
Tested By:	PJM			Depth:	8.5' to 9.9	9'	_	Optimum +/-:	
Remarks:							_	Natural:	Х
Material:	FILL : Hard	brown. grav	and dark-o	rav siltv clav	inter-mixe	ed with orga	- nic silt. trace	Remolded:	
	fine to coars	se sand.						-	
							_		
mple:			Tes	st Conditions:		<u> </u>	Noisture Content:	Before Test	After Test
Initial Length:	5.5945 in	= 14.210 cm	Ch	amber Pressure:	62 psi		Pan No. =	D	D
al Ave. Length (L):	5.6042 in	= 14.235 cm		Back Pressure:	58 psi		Wet Wt. + Pan =	1144.17	1157.03
Diameter:	2 8765 in	= 7.31 cm	Co	nfining Pressure:	4 nsi	_	Drv Wt + Pan =	896 92	896 92
Area (A)	6 499 sq in	= 41.93 sq.cm		Temp @ Start:	22.5 °C		Wt of Pan =	0.00	0.00
Volume (V):	36.356 cu in	= 595 77 cu cm		Temp @ End:	22.5 °C		Wt of Dry Soil -	896.92	806.02
Volume (V).	1144 17 gromo	- <u>595.77 cu cin</u>			22.5 °C		Wt. of Div Soll =	090.92	260.11
vvet vvt.:	1144.17 grams			Average Temp.:	22.5 °C		vvt. of vvater =	247.25	260.11
Unit wet wt.:	119.90 pcf			B Parameter:	0.96	_	% Moisture =	27.57	29.00
Unit Dry Wt.:	93.99 pcf						1	I	
			<u>Pi</u>	pette Pressures Di	uring Test:		% SATURATION	93.80	98.30
				Top Pipette:	60 psi	= 4220.3 cm	S.G.(est) =	2.7000	
ette:				Bottom Pipette:	58 psi	= 4079.6 cm	_		
$\frac{a \cdot L}{2 \cdot A \cdot \Delta t} \ln \left(\frac{1}{2 \cdot A \cdot \Delta t}\right)$	$\left(\frac{h_1}{h_2}\right)$	where: k a L	= Hydraulic Cor = Pipette Cross = Length of Sar	nductivity -Sectional Area nple	<u>^</u> 	ut = Time Interval h ₁ = Head Loss Au h ₂ = Head Loss Au	(t ₂ - t ₁) cross Permeameter cross Permeameter	r/Specimen at t ₁ r/Specimen at t ₂	
$\frac{a \cdot L}{2 \cdot A \cdot \Delta t} \ln \left(\frac{1}{2}\right)$	$\frac{\mathbf{h}_1}{\mathbf{h}_2}$	where: k a L A	= Hydraulic Cor = Pipette Cross = Length of Sar = Sample Cross	nductivity Sectional Area nple s-Sectional Area		ut = Time Interval h ₁ = Head Loss Ar h ₂ = Head Loss Ar n = Natural Logar	(t ₂ - t ₁) cross Permeameter cross Permeameter ithm (Base e = 2.7	r/Specimen at t ₁ r/Specimen at t ₂ 1828)	
$\frac{a \cdot L}{2 \cdot A \cdot \Delta t} \ln \left(\frac{1}{2}\right)$	$\frac{\mathbf{h}_1}{\mathbf{h}_2}$	where: k a L A	= Hydraulic Cor = Pipette Cross = Length of Sar = Sample Cross	nductivity Sectional Area mple s-Sectional Area Hydraulic Head	∆ I I	ht = Time Interval h ₁ = Head Loss Ar h ₂ = Head Loss Ar n = Natural Logar Hydraulic Head	(t ₂ - t ₁) cross Permeameter cross Permeameter ithm (Base e = 2.7	r/Specimen at t ₁ r/Specimen at t ₂ 1828)	Temp. Corr
$\frac{a \cdot L}{2 \cdot A \cdot \Delta t} \ln \left(\frac{1}{2}\right)$	$\frac{h_1}{h_2}$	where: k a L A	= Hydraulic Cor = Pipette Cross = Length of Sar = Sample Cross	nductivity Sectional Area mple s-Sectional Area Hydraulic Head Headwater	∆ I I Bottom	ht = Time Interval h ₁ = Head Loss Ar h ₂ = Head Loss Ar n = Natural Logar Hydraulic Head Tailwater	(t ₂ - t ₁) cross Permeameter ithm (Base e = 2.7 Head Loss	r/Specimen at t ₁ r/Specimen at t ₂ 1828)	Temp. Corr Permeabilit
$\frac{culations:}{2 \cdot A \cdot \Delta t} \ln\left(\frac{1}{2}\right)$	$\frac{h_1}{h_2}$	where: k a L A Time Interval Δt	= Hydraulic Cor = Pipette Cross = Length of Sar = Sample Cross Top Pipette	nductivity Sectional Area mple s-Sectional Area Hydraulic Head Headwater H ₁	∆ I Bottom Pipette	t = Time Interval h ₁ = Head Loss Ar h ₂ = Head Loss Ar n = Natural Logar Hydraulic Hear Tailwater H ₂	(t ₂ - t ₁) cross Permeameter cross Permeameter ithm (Base e = 2.7	r/Specimen at t ₁ r/Specimen at t ₂ 1828)	Temp. Corr Permeabilit k
$\frac{2ulations:}{2 \cdot A \cdot \Delta t} \ln \left(\frac{1}{2}\right)$	Time Readings	where: k a L A Time Interval Δt Seconds	= Hydraulic Cor = Pipette Cross = Length of Sar = Sample Cross Top Pipette cc	nductivity -Sectional Area mple s-Sectional Area Hydraulic Head Headwater H ₁ _ cm	∆ I Bottom Pipette cc	t = Time Interval h ₁ = Head Loss Ar h ₂ = Head Loss Ar n = Natural Logar Hydraulic Hear Tailwater H ₂ cm	(t ₂ - t ₁) cross Permeameter cross Permeameter ithm (Base e = 2.7 Head Loss h = H ₁ -H ₂ _ cm	r/Specimen at t ₁ r/Specimen at t ₂ 1828) <u>In (h1/h2)</u>	Temp. Corr Permeabilit k _cm/sec
$\frac{culations:}{2 \cdot A \cdot \Delta t} \ln \left(\frac{1}{2}\right)$ Date 5/6/2009	Time Readings 9:45 AM	where: k a L A Time Interval Δt Seconds	= Hydraulic Cor = Pipette Cross = Length of Sar = Sample Cross Top Pipette cc 48.45	nductivity Sectional Area mple s-Sectional Area Hydraulic Head Headwater H ₁ cm 4092.08	Bottom Pipette cc 14.20	ht = Time Interval h ₁ = Head Loss Ar h ₂ = Head Loss Ar n = Natural Logar Hydraulic Head Tailwater H ₂ cm 4272.01	$(t_2 - t_1)$ ross Permeameter ithm (Base e = 2.7 Head Loss h = H_1-H_2 cm -179.93	r/Specimen at t ₁ r/Specimen at t ₂ 1828) 1828) tn (h ₁ /h ₂₎	Temp. Corr Permeabilit k cm/sec -
$\frac{a \cdot L}{2 \cdot A \cdot \Delta t} \ln \left(\frac{1}{2}\right)$ Date $\frac{5/6/2009}{5/6/2009}$	Time Readings 9:45 AM 10:51 AM	where: k a L A Time Interval Δt Seconds 0.00 3.960	= Hydraulic Cor = Pipette Cross = Length of Sar = Sample Cross Top Pipette cc 48.45 48.40	nductivity Sectional Area mple s-Sectional Area Hydraulic Head Headwater H ₁ cm 4092.08 4092.14	Bottom Pipette cc 14.20 14.45	at = Time Interval h ₁ = Head Loss Ar h ₂ = Head Loss Ar n = Natural Logar Hydraulic Head Tailwater H ₂ cm 4272.01 4271.73	$(t_2 - t_1)$ cross Permeameter ithm (Base e = 2.7 Head Loss h = H_1-H_2 cm -179.93 -179.59	r/Specimen at t ₁ r/Specimen at t ₂ 1828) 	Temp. Corr Permeabilit k cm/sec – 6.740E-08
$\frac{a \cdot L}{2 \cdot A \cdot \Delta t} \ln \left(\frac{1}{2}\right)$ Date $\frac{5/6/2009}{5/6/2009}$	h1 h2 Time Readings 9:45 AM 10:51 AM 12:15 PM	where: k a L A Time Interval Δt Seconds 0.00 3,960 5,040	= Hydraulic Cor = Pipette Cross = Length of Sar = Sample Cross Top Pipette cc 48.45 48.40 48.20	nductivity Sectional Area mple s-Sectional Area Hydraulic Head Headwater H ₁ cm 4092.08 4092.14 4092.36	∆ Bottom Pipette cc 14.20 14.45	t = Time Interval h_1 = Head Loss Ar h_2 = Head Loss Ar h	$(t_2 - t_1)$ rross Permeameter ithm (Base e = 2.7 Head Loss h = H_1-H_2 cm -179.93 -179.13	r/Specimen at t ₁ r/Specimen at t ₂ 1828) <i>t</i> n (h ₁ /h ₂₎ - 0.00191 0.00256	Temp. Corr Permeabilit k cm/sec - 6.740E-08 7.077E-08
$\frac{\text{culations:}}{2 \cdot A \cdot \Delta t} \ln \left(\frac{1}{2}\right)$ Date $\frac{5/6/2009}{5/6/2009}$ $\frac{5/6/2009}{5/6/2009}$	h1 h2 Time Readings 9:45 AM 10:51 AM 12:15 PM 1:45 PM	where: k a L A Time Interval Δt Seconds 0.00 3,960 5,040	= Hydraulic Cor = Pipette Cross = Length of Sar = Sample Cross Top Pipette cc 48.45 48.40 48.20 48.05	hductivity Sectional Area s-Sectional Area Hydraulic Head Headwater H ₁ cm 4092.08 4092.14 4092.36 4092.54	Bottom Pipette cc 14.20 14.45 14.65	tt = Time Interval h_1 = Head Loss Ar h_2 = Head Loss Ar	$(t_2 - t_1)$ cross Permeameter cross Permeameter ithm (Base e = 2.7 Head Loss h = H ₁ -H ₂ cm -179.93 -179.59 -179.13 -178.56	r/Specimen at t ₁ r/Specimen at t ₂ 1828) <i>l</i> n (h ₁ /h ₂₎ – 0.00191 0.00256 0.00320	Temp. Corr Permeabilit k cm/sec - 6.740E-08 7.077E-08 8 280E-09
$\frac{\text{culations:}}{2 \cdot A \cdot \Delta t} \ln \left(\frac{1}{2 \cdot A \cdot \Delta t}\right)$ Date $\frac{5/6/2009}{5/6/2009}$ $\frac{5/6/2009}{5/6/2009}$	h1 h2 Time Readings 9:45 AM 10:51 AM 12:15 PM 1:45 PM 3:17 PM	where: k a L A Time Interval Δt Seconds 0.00 3,960 5,040 5,520	= Hydraulic Cor = Pipette Cross = Length of Sar = Sample Cross Top Pipette cc 48.45 48.40 48.20 48.05 47.85	hductivity Sectional Area mple s-Sectional Area Hydraulic Head Headwater H ₁ cm 4092.08 4092.14 4092.36 4092.54 4092.77	Bottom Pipette cc 14.20 14.65 15.00 15.25	tt = Time Interval h ₁ = Head Loss Ar h ₂ = Head Loss Ar n = Natural Logar Hydraulic Hear Tailwater H ₂ cm 4272.01 4271.73 4271.09 4270.81	$(t_2 - t_1)$ cross Permeameter cross Permeameter ithm (Base e = 2.7 Head Loss h = H ₁ -H ₂ cm -179.93 -179.93 -179.13 -178.56 -178.04	r/Specimen at t ₁ r/Specimen at t ₂ 1828) <i>l</i> n (h ₁ /h ₂₎ - 0.00191 0.00256 0.00320 0.00289	Temp. Corr Permeabilit k cm/sec - 6.740E-08 7.077E-08 8.280E-08
$\frac{\text{sulations:}}{2 \cdot A \cdot \Delta t} \ln \left(\frac{1}{2}\right)$ $\frac{\text{Date}}{5/6/2009}$ $\frac{5/6/2009}{5/6/2009}$ $\frac{5/6/2009}{5/6/2009}$ $\frac{5}{5/6/2009}$	h1 h2 Time Readings 9:45 AM 10:51 AM 12:15 PM 1:45 PM 3:17 PM 9:24 AM	where: k a L A Time Interval Δt Seconds 0.00 3,960 5,040 5,520 61.440	= Hydraulic Cor = Pipette Cross = Length of Sar = Sample Cross Top Pipette cc 48.45 48.40 48.20 48.05 47.85 45.50	Hydraulic Head Hydraulic Head Headwater H1 cm 4092.08 4092.14 4092.36 4092.54 4092.77	Δ Bottom Pipette cc 14.20 14.45 14.65 15.00 15.25	at = Time Interval h ₁ = Head Loss Ar h ₂ = Head Loss Ar n = Natural Logar Hydraulic Head Tailwater H ₂ cm 4272.01 4271.73 4271.50 4271.09 4270.81	$(t_2 - t_1)$ cross Permeameter ithm (Base e = 2.7 Head Loss h = H_1-H_2 cm -179.93 -179.59 -179.13 -178.56 -178.04 172.24	r/Specimen at t ₁ r/Specimen at t ₂ 1828) <i>l</i> n (h ₁ /h ₂) - 0.00191 0.00256 0.00320 0.00289 0.02270	Temp. Corr Permeabilit k cm/sec - 6.740E-08 7.077E-08 8.280E-08 7.312E-08
$\frac{\text{sulations:}}{2 \cdot A \cdot \Delta t} \ln \left(\frac{1}{2} + \frac{1}{2 \cdot A \cdot \Delta t} \ln \left(\frac{1}{2} + \frac{1}{2 \cdot A \cdot \Delta t} \right) \right)$ $\frac{\text{Date}}{5/6/2009}$ $\frac{5/6/2009}{5/6/2009}$ $\frac{5/6}{2009}$ $\frac{5}{2} + \frac{1}{2 \cdot A \cdot \Delta t} + \frac{1}{2 \cdot$	h1 h2 Time Readings 9:45 AM 10:51 AM 12:15 PM 1:45 PM 3:17 PM 8:21 AM	where: k a L A Time Interval Δt Seconds 0.00 3,960 5,040 5,520 61,440	= Hydraulic Cor = Pipette Cross = Length of Sar = Sample Cross Top Pipette cc 48.45 48.40 48.20 48.05 47.85 45.60	nductivity Sectional Area mple s-Sectional Area Hydraulic Head Headwater H1 cm 4092.08 4092.14 4092.36 4092.54 4092.77 4095.34	۵ ال Bottom Pipette cc 14.20 14.45 15.00 15.25 18.00	at = Time Interval h ₁ = Head Loss Ar h ₂ = Head Loss Ar n = Natural Logar Hydraulic Head Tailwater H ₂ cm 4271.73 4271.50 4271.09 4270.81 4267.66	$(t_2 - t_1)$ cross Permeameter ithm (Base e = 2.7 Head Loss h = H_1-H_2 cm -179.93 -179.13 -178.56 -178.04 -172.31	r/Specimen at t ₁ r/Specimen at t ₂ 1828) 	Temp. Corr Permeabilit k cm/sec - 6.740E-08 7.077E-08 8.280E-08 7.312E-08 7.431E-08
$\frac{a \cdot L}{2 \cdot A \cdot \Delta t} \ln \left(\frac{1}{2}\right)$ Date $\frac{5/6/2009}{5/6/2009}$ $\frac{5/6/2009}{5/6/2009}$ $\frac{5}{6}/2009}$	h1 h2 Time Readings 9:45 AM 10:51 AM 12:15 PM 1:45 PM 3:17 PM 8:21 AM	where: k a L A Time Interval Δt Seconds 0.00 3,960 5,040 5,040 5,520 61,440	= Hydraulic Cor = Pipette Cross = Length of Sar = Sample Cross Top Pipette cc 48.45 48.40 48.20 48.05 47.85 45.60	nductivity Sectional Area mple s-Sectional Area Hydraulic Head Headwater H ₁ cm 4092.08 4092.14 4092.36 4092.54 4092.54 4092.77 4095.34	Bottom Pipette cc 14.20 14.45 15.00 15.25 18.00	tt = Time Interval h ₁ = Head Loss Ar h ₂ = Head Loss Ar n = Natural Logar Hydraulic Head Tailwater H ₂ cm 4272.01 4271.73 4271.09 4271.09 4270.81 4267.66	(t ₂ - t ₁) cross Permeameter ithm (Base e = 2.7 Head Loss h = H ₁ -H ₂ cm -179.93 -179.59 -179.13 -178.56 -178.04 -172.31	r/Specimen at t ₁ r/Specimen at t ₂ 1828) 	Temp. Corr Permeabilit k cm/sec - 6.740E-08 7.077E-08 8.280E-08 7.312E-08 7.431E-08
$\frac{\text{culations:}}{2 \cdot A \cdot \Delta t} \ln \left(\frac{1}{2}\right)$ Date $\frac{5/6/2009}{5/6/2009}$ $\frac{5/6/2009}{5/6/2009}$ $\frac{5/6/2009}{5/6/2009}$ $\frac{5}{5}/7/2009}$	h1 h2 Time Readings 9:45 AM 10:51 AM 12:15 PM 1:45 PM 3:17 PM 8:21 AM	where: k a L A Time Interval Δt Seconds 0.00 3,960 5,040 5,400 5,520 61,440	= Hydraulic Cor = Pipette Cross = Length of Sar = Sample Cross Top Pipette cc 48.45 48.40 48.20 48.05 47.85 45.60	nductivity Sectional Area mple s-Sectional Area Hydraulic Head Headwater H ₁ cm 4092.08 4092.14 4092.36 4092.54 4092.54 4092.77 4095.34	Bottom Pipette cc 14.20 14.45 14.65 15.00 15.25 18.00	tt = Time Interval h ₁ = Head Loss Ar h ₂ = Head Loss Ar n = Natural Logar Hydraulic Hear Tailwater H ₂ cm 4272.01 4271.73 4271.50 4271.09 4270.81 4267.66	(t ₂ - t ₁) rross Permeameter rross Permeameter ithm (Base e = 2.7 Head Loss h = H ₁ -H ₂ cm -179.93 -179.59 -179.13 -178.56 -178.04 -172.31	r/Specimen at t ₁ r/Specimen at t ₂ 1828) 	Temp. Corr Permeabilit k cm/sec - 6.740E-08 7.077E-08 8.280E-08 7.312E-08 7.431E-08
$\frac{\text{culations:}}{2 \cdot \text{A} \cdot \Delta t} \ln \left(\frac{1}{2}\right)$ $\frac{\text{Date}}{5/6/2009}$ $\frac{5/6/2009}{5/6/2009}$ $\frac{5/6/2009}{5/6/2009}$ $\frac{5/6}{2009}$	h1 h2 Time Readings 9:45 AM 10:51 AM 12:15 PM 1:45 PM 3:17 PM 8:21 AM	where: k a L A Time Interval Δt Seconds 0.00 3,960 5,040 5,520 61,440 4 4 4 4 4 4 4 4 4 4 4 4 4	= Hydraulic Cor = Pipette Cross = Length of Sar = Sample Cross Top Pipette cc 48.45 48.40 48.20 48.05 47.85 45.60	nductivity -Sectional Area mple s-Sectional Area Hydraulic Head Headwater H ₁ cm 4092.08 4092.14 4092.36 4092.54 4092.77 4095.34	Bottom Pipette cc 14.20 14.45 14.65 15.00 15.25 18.00	tt = Time Interval h ₁ = Head Loss Ar h ₂ = Head Loss Ar n = Natural Logar Hydraulic Hear Tailwater H ₂ cm 4272.01 4271.73 4271.50 4271.09 4270.81 4267.66	(t ₂ - t ₁) rross Permeameter rross Permeameter ithm (Base e = 2.7 Head Loss h = H ₁ -H ₂ cm -179.93 -179.59 -179.13 -178.56 -178.04 -172.31	r/Specimen at t ₁ r/Specimen at t ₂ 1828) 	Temp. Corr Permeabilit k cm/sec - 6.740E-08 7.077E-08 8.280E-08 7.312E-08 7.431E-08
$\frac{\text{culations:}}{2 \cdot \text{A} \cdot \Delta t} \ln \left(\frac{1}{2}\right)$ $\frac{\text{Date}}{5/6/2009}$ $\frac{5/6/2009}{5/6/2009}$ $\frac{5/6/2009}{5/6/2009}$ $\frac{5}{7}/2009}$	h1 h2 Time Readings 9:45 AM 10:51 AM 12:15 PM 1:45 PM 3:17 PM 8:21 AM	where: k a L A Time Interval Δt Seconds 0.00 3,960 5,040 5,520 61,440 1 4 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1	= Hydraulic Cor = Pipette Cross = Length of Sar = Sample Cross Top Pipette cc 48.45 48.40 48.20 48.05 47.85 45.60	nductivity Sectional Area mple s-Sectional Area Hydraulic Head Headwater H1 cm 4092.08 4092.14 4092.36 4092.54 4092.77 4095.34	Bottom Pipette cc 14.20 14.45 14.65 15.00 15.25 18.00	tt = Time Interval h ₁ = Head Loss Ar h ₂ = Head Loss Ar n = Natural Logar Hydraulic Head Tailwater H ₂ cm 4272.01 4271.03 4271.09 4270.81 4267.66	(t ₂ - t ₁) cross Permeameter cross Permeameter ithm (Base e = 2.7 Head Loss h = H ₁ -H ₂ cm -179.93 -179.93 -179.13 -178.56 -178.04 -172.31	r/Specimen at t ₁ r/Specimen at t ₂ 1828) 	Temp. Corr Permeabilit k cm/sec - 6.740E-08 7.077E-08 8.280E-08 7.312E-08 7.431E-08
$\frac{\text{Date}}{5/6/2009}$ 5/6/2009 5/6/2009 5/6/2009 5/6/2009	h1 h2 Time Readings 9:45 AM 10:51 AM 12:15 PM 3:17 PM 8:21 AM	where: k a L A Time Interval Δt Seconds 0.00 3,960 5,040 5,520 61,440 1 1 1 1 1 1 1 1 1 1 1 1 1	= Hydraulic Cor = Pipette Cross = Length of Sar = Sample Cross Top Pipette cc 48.45 48.40 48.20 48.05 47.85 45.60	nductivity Sectional Area mple s-Sectional Area Hydraulic Head Headwater H1 cm 4092.08 4092.14 4092.36 4092.34 4092.77 4095.34	۵ ال Bottom Pipette cc 14.20 14.45 15.00 15.25 18.00	at = Time Interval h ₁ = Head Loss Ar h ₂ = Head Loss Ar n = Natural Logar Hydraulic Head Tailwater H ₂ cm 4271.73 4271.50 4271.09 4270.81 4267.66	(t ₂ - t ₁) cross Permeameter ithm (Base e = 2.7 Head Loss h = H ₁ -H ₂ cm -179.93 -179.59 -179.13 -178.56 -178.04 -172.31	r/Specimen at t ₁ r/Specimen at t ₂ 1828) 	Temp. Corr Permeabilit k cm/sec - 6.740E-08 7.077E-08 8.280E-08 7.312E-08 7.431E-08
$\frac{\text{culations:}}{2 \cdot A \cdot \Delta t} \ln \left(\frac{1}{2} + \frac{1}{2 \cdot A \cdot \Delta t} - \frac{1}{2 \cdot A \cdot \Delta t} \right)$ Date $\frac{5/6/2009}{5/6/2009}$ $\frac{5/6/2009}{5/6/2009}$ $\frac{5}{2} + \frac{1}{2 \cdot A \cdot \Delta t} + \frac{1}{2 \cdot A \cdot \Delta$	h1 h2 Time Readings 9:45 AM 10:51 AM 12:15 PM 3:17 PM 8:21 AM	where: k a L A Time Interval Δt Seconds 0.00 3,960 5,040 5,040 5,520 61,440 1 1 1 1 1 1 1 1 1 1 1 1 1	= Hydraulic Cor = Pipette Cross = Length of Sar = Sample Cross Top Pipette cc 48.45 48.40 48.20 48.20 48.05 47.85 45.60	nductivity -Sectional Area mple s-Sectional Area Hydraulic Head Headwater H1 cm 4092.08 4092.14 4092.36 4092.14 4092.36 4092.34 4092.34 1000000000000000000000000000000000000	Воttom Pipette cc 14.20 14.45 15.00 15.25 18.00	at = Time Interval h1 = Head Loss Ar h2 = Head Loss Ar n = Natural Logar Hydraulic Hear Tailwater H2 cm 4272.01 4271.73 4271.09 4271.81 4267.66	(t ₂ - t ₁) cross Permeameter ithm (Base e = 2.7 Head Loss h = H ₁ -H ₂ cm -179.93 -179.13 -178.56 -178.04 -172.31	r/Specimen at t ₁ r/Specimen at t ₂ 1828) <i>l</i> n (h ₁ /h ₂₎ - 0.00191 0.00256 0.00320 0.00289 0.03272	Temp. Corr Permeabilit k cm/sec - 6.740E-08 7.077E-08 8.280E-08 7.312E-08 7.431E-08
$\frac{culations:}{2 \cdot A \cdot \Delta t} \ln \left(\frac{1}{2} + \frac{1}{2 \cdot A \cdot \Delta t} - \frac{1}{2 \cdot A \cdot \Delta t} \right)$ Date 5/6/2009 5/6/2009 5/6/2009 5/6/2009 5/6/2009 5/7/200 5/7/2009 5/7/2009 5/7/2009 5/7/2009	h1 h2 Time Readings 9:45 AM 10:51 AM 12:15 PM 3:17 PM 8:21 AM	where: k 2	= Hydraulic Cor = Pipette Cross = Length of Sar = Sample Cross Top Pipette cc 48.45 48.40 48.20 48.05 47.85 45.60	nductivity -Sectional Area mple s-Sectional Area Hydraulic Head Headwater H1 cm 4092.08 4092.14 4092.36 4092.54 4092.54 4092.54 4092.54 4092.54 4092.34	Bottom Pipette cc 14.20 14.45 15.00 15.25 18.00	at = Time Interval h1 = Head Loss Ar h2 = Head Loss Ar m = Natural Logar Hydraulic Hear Tailwater H2 cm 4272.01 4271.73 4271.09 4271.09 4267.66	(t ₂ - t ₁) rross Permeameter rross Permeameter ithm (Base e = 2.7 Head Loss h = H ₁ -H ₂ cm -179.93 -179.59 -179.13 -178.56 -178.04 -172.31 -172.31	r/Specimen at t ₁ r/Specimen at t ₂ 1828) 	Temp. Corr Permeabilit k cm/sec - 6.740E-08 7.077E-08 8.280E-08 7.312E-08 7.431E-08
$\frac{\text{culations:}}{2 \cdot A \cdot \Delta t} \ln \left(\frac{1}{2} + \frac{1}{2 \cdot A \cdot \Delta t} - \frac{1}{2 \cdot A \cdot \Delta t} \right)$ Date $\frac{5}{6}/2009$ $\frac{5}{6}/2009$ $\frac{5}{6}/2009$ $\frac{5}{6}/2009$ $\frac{5}{7}/2009$ $\frac{5}{7}/2009$	h1 h2 Time Readings 9:45 AM 10:51 AM 12:15 PM 3:17 PM 8:21 AM	where: k a L A Time Interval Δt Seconds 0.00 3,960 5,040 5,400 5,520 61,440 1 1 1 1 1 1 1 1 1 1 1 1 1	= Hydraulic Cor = Pipette Cross = Length of Sar = Sample Cross Top Pipette cc 48.45 48.40 48.20 48.05 47.85 45.60	nductivity Sectional Area mple s-Sectional Area Hydraulic Head Headwater H1 cm 4092.08 4092.14 4092.36 4092.54 4092.54 4092.77 4095.34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Bottom Pipette cc 14.20 14.45 14.65 15.00 15.25 18.00	tt = Time Interval h ₁ = Head Loss Ar h ₂ = Head Loss Ar n = Natural Logar Hydraulic Hear Tailwater H ₂ cm 4272.01 4271.09 4271.09 4270.81 4267.66	(t ₂ - t ₁) rross Permeameter rross Permeameter ithm (Base e = 2.7 Head Loss h = H ₁ -H ₂ cm -179.93 -179.59 -179.13 -178.56 -178.04 -172.31	r/Specimen at t ₁ r/Specimen at t ₂ 1828) 	Temp. Corr Permeabilit k cm/sec - 6.740E-08 7.077E-08 8.280E-08 7.312E-08 7.431E-08

Appendix III – Shear Strength Parameter Justification

Layer: NEWER EMBANKMENT FILL

BORING	SAMPLE	SAMPLE	NATURAL	LIQUID	PLASTIC	PLASTIC	GRAVEL	SAND	SILT	CLAY	SILT/CLAY	USCS
NUMBER	NUMBER	DEPTH	MOISTURE	LIMIT	LIMIT	INDEX				.002 mm		CLASSIFICATION
			CONTENT	%	%	%	%	%	%	%	%	
BAP-0901	S-3	4.75	16									
BAP-0901	S-5	7.75	16	28	18	10						
BAP-0901	S-9	13.75	13	27	17	10						
BAP-0901	S-12	18.25	14	37	24	13	7	32	49	12	61	SANDY LEAN CLAY CL
BAP-0902	S-4	6.25	13	27	17	10	42	34	16	8	24	CLAYEY GRAVEL with SAND GC
BAP-0902	S-7	10.75	20									
BAP-0902	S-8	12.25	10	26	17	9	32	39	21	8	29	CLAYEY SAND with GRAVEL SC
BAP-0902	S-11	16.75	24	37	19	18						
BAP-0902	S-12	18.25	21	35	17	18	8	37	33	21	54	SANDY LEAN CLAY CL
BAP-0902	S-13	19.75	31	29	17	12	1	20	62	17	79	LEAN CLAY with SAND CL
BAP-0904	S-3	4.75	13									
BAP-0904	S-6	9.25	14	25	16	9	31	39	21	10	31	CLAYEY SAND with GRAVEL SC
BAP-0904	S-9	13.75	16	35	21	14						
BAP-0904	S-11	16.75					47	25			27	
BAP-0906	S-2A	2.9	11									
BAP-0906	S-3	4.75	15	27	17	10						
BAP-0906	S-8	12.75					30	40	22	9	31	
BAP-0906	S-11	17.25	14	31	19	12	18	44	26	12	38	CLAYEY SAND with GRAVEL SC
Samp	le Size	18	16	12	12	12	9	9	8	8	9]
Mini	mum	3	10	25	16	9	1	20	16	8	24	
Max	imum	20	31	37	24	18	47	44	62	21	79	
M	ean	11.7	16.3	30.3	18.3	12.1	24.0	34.4	31.3	12.1	41.6]
Me	dian	13	15	29	17	11	30	37	24	11	31]
M	ode	5	16	27	17	10	#N/A	39	21	12	31]
Std	Dev	-	5.4	4.5	2.3	3.2	16.2	7.7	16.1	4.6	18.9	

Layer: ORIGINAL EMBANKMENT FILL

BORING NUMBER	SAMPLE NUMBER	SAMPLE DEPTH	NATURAL MOISTURE	LIQUID LIMIT	PLASTIC LIMIT	PLASTIC INDEX	GRAVEL	SAND	SILT	CLAY .002 mm	SILT/CLAY	USCS CLASSIFICATION
			CONTENT	%	%	%	%	%	%	%	%	
BAP-0903	S-2	3.25	24	48	24	24	0	8	60	32	92	LEAN CLAY CL
BAP-0903	S-3	4.75	22									
BAP-0903	S-5	7.75	20	36	20	16	0	14	58	28	86	LEAN CLAY CL
BAP-0905	S-3	4.75	17	32	18	14	0	25	53	23	76	LEAN CLAY with SAND CL
BAP-0905	S-5	7.75	22	48	24	24						
BAP-0905	S-6B	9.85	33				5	14			81	
BAP-0907	S-2	3.25	21									
BAP-0907	S-4	6.25	15									
BAP-0907	S-5	7.75	23	49	26	23						
BAP-0907	S-6A	9.25	28	47	29	18	0	5	67	29	96	SILT ML
						-				•		
Samp	le Size	10	10	6	6	6	5	5	4	4	5	
Mini	mum	3	15	32	18	14	0	5	53	23	76	
Max	imum	10	33	49	29	24	5	25	67	32	96	
Me	ean	6.5	22.5	43.3	23.5	19.8	1.0	13.2	59.5	28.0	86.2	
Me	dian	7	22	48	24	21	0	14	59	29	86	
Mo	ode	8	22	48	24	24	0	14	#N/A	#N/A	#N/A	
Std	Dev	-	5.1	7.4	4.0	4.4	2.2	7.7	5.8	3.7	8.1	

Layer: ALLUVIUM SILT AND CLAY

BORING	SAMPLE	SAMPLE	NATURAL	LIQUID	PLASTIC	PLASTIC	GRAVEL	SAND	SILT	CLAY	SILT/CLAY	USCS
NUMBER	NUMBER	DEPTH	MOISTURE	LIMIT	LIMIT	INDEX				.002 mm		CLASSIFICATION
			CONTENT	%	%	%	%	%	%	%	%	
BAP-0901	S-15	22.75	30	NP	NP	NP	0	5	89	6	95	SILT ML
BAP-0901	S-16A	24.5										
BAP-0901	S-18	29.25	27	37	22	15	0	9	63	28	91	LEAN CLAY CL
BAP-0901	S-19A	31.25										
BAP-0901	S-19B	31.75	33	35	28	7	0	26	56	18	74	SILT with SAND ML
BAP-0901		32.25										
BAP-0902	S-14	21.25	26	NP	NP	NP	0	13	83	4	87	SILT ML
BAP-0902	S-15	22.75					1	22			78	
BAP-0903	S-10	21.75	35	34	21	13	0	29	51	19	70	LEAN CLAY with SAND CL
BAP-0904	S-15	22.75	26	NP	NP	NP	1	52	45	3	48	SILTY SAND SM
BAP-0904	S-17	25.75	22	NP	NP	NP	0	8	86	5	91	SILT ML
BAP-0905	S-11	21.75	38	38	23	15	2	36	47	15	62	SANDY LEAN CLAY CL
BAP-0906	S-15	24.75	31	NP	NP	NP	0	5	89	7	96	SILT ML
BAP-0906	S-16A	26.25					4	41			55	
BAP-0906	S-17	27.25	22	NP	NP	NP	5	20	70	5	75	SILT with SAND ML
												_
Samp	le Size	15	10	4	4	4	12	12	10	10	12	
Mini	imum	21	22	34	21	7	0	5	45	3	48	
Max	imum	32.25	38	38	28	15	5	52	89	28	96	
M	ean	25.73	29.0	36.0	23.5	12.5	1.1	22.2	67.9	11.0	76.8	
Me	dian	24.75	29	36	23	14	0	21	67	7	77	
M	ode	22.75	26	#N/A	#N/A	15	0	5	89	5	91	
Std	Dev	-	5.4	1.8	3.1	3.8	1.7	15.2	17.8	8.5	15.9	

NP - Non Plastic

Layer: ORGANIC CLAYEY SILT

BORING	SAMPLE	SAMPLE	NATURAL	LIQUID	PLASTIC	PLASTIC	GRAVEL	SAND	SILT	CLAY	SILT/CLAY	USCS
NUMBER	NUMBER	DEPTH	MOISTURE	LIMIT	LIMIT	INDEX				.002 mm		CLASSIFICATION
			CONTENT	%	%	%	%	%	%	%	%	
BAP-0901	S-20	34.25	42	34	27	7	0	22	62	16	78	ORGANIC SILT with SAND OL
BAP-0901	S-21	36.75	40	45	29	16	11	30			59	SANDY ORGANIC SILT OL
BAP-0901	S-22	39.25	42	40	23	17	0	18	59	22	81	ORGANIC CLAY with SAND OL
BAP-0902	S-18	27.25	54	NP	NP	NP	0	15	69	16	85	ORGANIC SILT OL
BAP-0902	S-19	28.75	43	NP	NP	NP	0	25	61	13	74	ORGANIC SILT with SAND OL
BAP-0902	S-20	32.25	38	36	28	8	2	23	59	16	75	ORGANIC SILT with SAND OL
BAP-0903	S-6	9.25	49	41	38	3	0	33	52	15	67	SANDY ORGANIC SILT OL
BAP-0903	S-7	14.25	43	NP	NP	NP	0	29	56	15	71	ORGANIC SILT with SAND OL
BAP-0903	S-8	16.75	43	37	24	13	0	24	57	19	76	ORGANIC CLAY with SAND OL
BAP-0903	S-9	19.25	44	35	24	11	0	39	45	16	61	SANDY ORGANIC CLAY OL
BAP-0904	S-13	19.75	28	NP	NP	NP	0	8	87	5	92	ORGANIC SILT OL
BAP-0904	S-18	27.25	38	38	24	14	0	21	58	21	79	ORGANIC CLAY with SAND OL
BAP-0904	S-19	28.75	47	42	30	12	0	22	62	17	79	ORGANIC SILT with SAND OL
BAP-0905	S-8	14.25	45	43	27	16	0	19	60	21	81	ORGANIC SILT with SAND OL
BAP-0905	S-9	16.75	42	40	25	15	0	16	60	24	84	ORGANIC CLAY with SAND OL
BAP-0906	S-19	31.75	34	33	22	11	0	19	63	18	81	ORGANIC CLAY with SAND OL
BAP-0906	S-20	34.25	43	50	30	20	0	3	53	44	97	ORGANIC SILT OH
BAP-0906	S-21	36.75	38	43	26	17	1	7	65	27	92	ORGANIC CLAY OL
BAP-0907	S-7	11.75					0	17	66	17	83	
BAP-0907	S-8	14.25	43	44	28	16	0	15	63	22	85	ORGANIC SILT with SAND OL
BAP-0907	S-9	16.75	44	45	29	16	0	15	64	21	85	ORGANIC SILT with SAND OL
BAP-0907	S-10	19.25	40	48	29	19	0	9			91	ORGANIC SILT OL
BAP-0907	S-11	21.75	39	30	24	6	1	43	44	12	56	SANDY ORGANIC SILT OL
Samp	le Size	23	22	18	18	18	23	23	21	21	23]
Mini	mum	9	28	30	22	3	0	3	44	5	56	
Max	imum	39.25	54	50	38	20	11	43	87	44	97	
Me	ean	23.97	41.8	40.2	27.1	13.2	0.7	20.5	60.2	18.9	78.8	
Me	dian	21.75	43	41	27	15	0	19	60	17	81]
Mo	ode	14.25	43	45	24	16	0	15	62	16	81]
Std	Dev	-	5.2	5.4	3.7	4.7	2.3	9.8	8.8	7.4	10.6]

Layer: GLACIAL OUTWASH SAND AND GRAVEI

BORING	SAMPLE	SAMPLE	NATURAL	GRAVEL	SAND	SILT	CLAY	SILT/CLAY
NUMBER	NUMBER	DEPTH	CONTENT	0/_	0/_	0/_	.002 mm	0/_
	6.00	27.25		/0	70	/0	70	20
DAP-0902	5-22	37.25	22	0	70	22	0	30
BAP-0902	S-23	39.75	24	0	83	13	4	17
BAP-0902	S-24	42.25		4	82			14
BAP-0903	S-11	24.25		9	77			14
BAP-0904	S-21	36.75		0	76			24
BAP-0905	S-13	26.75		19	73			8
BAP-0906	S-24	44.25		56	38			7
BAP-0907	S-13	26.75		53	40			7
-	•							
Samp	ole Size	8	2	8	8	2	2	8
Min	imum	24	22	0	38	13	4	7
Max	timum	44.25	24	56	83	22	8	30
M	ean	34.75	23.0	17.6	67.4	17.5	6.0	15.1
Me	edian	37.00	23	7	75	18	6	14
M	ode	26.75	#N/A	0	#N/A	#N/A	#N/A	14
Std	Dev	-	1.4	23.7	18.0	6.4	2.8	8.4

SOLUTIONS TO BUILD ON Cincinnati (513) 771-8471 Cleveland (216) 901-1000 Columbus (614) 793-2226 Dayton (937) 424-1011

Project/Proposal No. <u>01.11497. 013</u>	Calculated By MTR Date 6-29-09
Project/Proposal Name CARDINAL ASH PINI	Checked By MAR Date 7-2-09
Subject STRIENGTH & PERM. PARAMETER.	<u>s</u> Sheet/ of <u>8</u>

1 1		8 B U	-	1.				1 1 1	
5779-B,1	LITY AN	ALYSIS	SILCE	140 1	MUDIFICAT	EJNS HAN.	K REEN	MANE	
SIDE	15 2 19	278		a.17	luna	(Chail	Ja	000	lauren
arrec	4	10, 20	- CONST	TNI	NORMAC	J-00 E	- ~0	RUO R	nu Autors 1;
	the second second		<u> </u>		der le se	- in fan i -	AT TH	15 Tim	E
	_ 2				in installe	1			
+ >TR	ENGITH TA	RANJETTE	es						
	ESMAT	e effe	CTIVE	ANGIL	a of we	TERNAL	FRICTU	UN, A	OF
	COTTESIVE .	LAVERS	BY Can	NARIAL	G RESULTS	FRAM	THE	Fullow	sing the
DO	CRRELATIO	NS 70	LL C	LAY SIZ	IN FRAT	ton1, ANI	A OVER	RURDEN	1 STRES
	DEVELOPEL	3 BY 5	DARK ET	AL F	UR THE <	SECANT	FUIN	SOFTEN	(Fi)
	FRICTION	ANKALE					,,	047.07	1.1.5
	1								
2) 7	RELATIONS	HIP BET	WEEN ,	\$' AND	DLASTIC	ITY INDE	x AS	DEVE	LOPED
	BY TERZ	AGIHI, P	Eck, As	is mi	ESRI, 1991	6			
3) (ORRELATIO	w 70 c	CLAY SIE	CED FR	Action For	R XLORMAC	LY CON	ISOLIDA	TIED
0	CLA4 - 1	DISSERTAT	FIM 3.	1 G.A	HALL, 4	NU, 1974	. (ALL	unum e	mary)
	w	HERE (S'NC =	36 -	0.26651	2 CLAY)		
		7-					· · · · · · · · · · · · · · · · · · ·		
								1 10 14	
4	FOR FUL		FSFILM	and Do		Pro or tod	1.00		
4) /	FOR FILL	SONLS,	ESTIMA	TTE DR.	AWIED S	TRENG TH	VALUE	5 FRC) In
4) /	FUR FILL	SULS, DESIGN,	ESTIMA	+TTE DR. L 7.2	AMPED S USINCY	TRIENIG 771 TABLIE	VALUE. I - 'T	5 FRO YPICAL)). A
4) /	FUR FILL NAUFAC , PRUPKRTIES	SOULS, DESIGN, OF CO.	ESTIIMA MANUA MPACTE	the Dr. L 7.2 D Sorls	ANNED S USINCY	TRENG TH TABLE	V4LUE. 1 - 'T	s ARU YPICAL	
4) /	FUL FILL NAUFAC , PROPERTIES	SOULS, DESUGN, OF CO	ESTIMA MAXINA MPACTE	the Dr. L 7.2 D Sorks	ANNED S USING	TRIENIG TH TABLIE	V4LUE. 1 - 'T	5 ACC	
4) /	FUR FILL NAUFAC , PRUPKRTNES	SULS, DESUGN, OF Co.	ESTIMA MAN OR MPACTE	the Dr. L 7.2 D Sorls	AMARD S USING 5	TRIENIG TH TABLIE	V42UE 1 - 'T	S AL	
4) /	FUR FILL NANFAC , PROPERTIES	SONLS, DESIGN, OF Co.	ESTIMA MAN SA MPACTE	ette Dr. L 7.2 D Sorls	AN-IED S USINCLY 5'	TRIENIG TH TABLIE	V4LUE, - 'T	s pro ypical	
4) /	FUR FILL NAUFAC , PROPERTIES	SOVLS, DESUGN, OF CO	ESTIIMA MAN NA MPACTE	the Dr. L 7.2 D Sorls	ANNED S USING 5'	TRENG TH TABLIE	V4LUE. - 'T	5 PRU YPICAL	
4)	FUL FILL NANFAC , PROPERTIES	SONLS, DESCAN, OF CO.	ESTIMA MAXUA MPACTE	ette Dr. L 7.2 D Sorls	ANNED S USINCLY 5'	TRIENIG TH TABLIE	V4LUE,	5 ALL	
4) / / + GRA	FUR FILL NAUFAC , PROPRETIES	SULS, DESIGN, OF CO.	ESTIMA MARIA MACTE	TTE DR 2 7.2 D Sorls HERS (ANNED S. USING S'	TRENIG TH TABLIE	V4LUE, 1 - 'T	5 PRU YPICAL	VEL)
4) / / + GRA	FUL FILL NAUFAC , PRUPKETTES INULAR FU ESTIMATE	SULS, DESIGN, OF CO. UNIDATION S' BASI	ESTIMA MAXUM MPACTE	HTTE DR. L 7.2 D Soils D Soils (IERS (SDT C.	ANJED S USINCY S'	TRENG TH TABLE CUTUMSH SNS AND	VALUE, 1 - 'T SAND E,RAN	5 AW YRICAL S GRA	VEL) ANALYS
4) / , + GRA	FUL FILL NAUFAC , PROPRETIES NULAR FU ESTIMATE	SULS, DESIGN, OF CO. UNIDATION S' BASI	ESTIMA MANUA MACTE	HTE DR L 7.2 D Sorls HERS (SPT C	ANNED S USING S' CHACIAL WRELATES	TRENG TH TABLIE CUTUMSH ANIS ANIS	VALUE, 1 - 'T SAND E,RAM	5 FRU YPICAL \$ GRA V SIZE	VEL) ANALYS
4) / / + GRA 2 i)	FUL FILL NAUFAC, PROPERTIES INULAR FO ESTIMATE d'= -115.	SULS, DESIGN, OF CO. UNINATION S' BASI 4 (NGO)	ESTIMA MANUA MACTE MACTE	TTE DR L 7.2 D SOILS NERS (SPT C (HAN	ANJED S USINCY S' CELACIAL WRELATES	TRENGITH TABLIE CUTUMSH SWS ANIS	VALUE, 1 - 'T SAND E,RAN A, 1990	5 PRU YPICAL \$ GRA V SIZIS	NEL) ANALYS
4) / / + GRA /	FUR FILL NAUFAC , PROPRETIES NULAR FO ESTIMATE &' = -115.	52465, DE SUGN, OF CO. WILLATION S' 3050 4 (NGO)	ESTIMA MANUA MACTE MACTE	IERS (SPT C	ANNED S USING S' (CHACIAL WRELATES TALIAKA AN	TRENIGITH TABLIE CUTUMSH ANIS ANIS	VALUE, 1 - 'T SAND E,RAN A, 1990	S FRU YPICAL \$ GRA V SIZE	VEL) ANALYS
4) / / / + GRA 2 /) 2)	FUL FILL NAUFAC , PRUPKETTES NULAR FU ESTIMATE d'= -115. COMPARE	SULS, DESIGN, OF CO. VN VATION & BOS 4 (NGO) EQN	ESTIMA MANUA MACTE MACTE 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ICRS (SPT C TYPICA	ANNED S USING S' CALACIAL WRIELATES MALIAKA AN AL VALVES	TRENGTH TABLIE CUTUMSH ANS AND HIS UCHIA IESTABLIS	V4LUE, 1 - 'T SA~1D E,PA M, 1992 HED BJ	5 FRU YPICAL SIZA SIZA SCHRONE	VEL) ANALYS ANALYS
4) / / / / / / / / / / / /	FUR FILL NAUFAC PROPRETIES NULAR FO ESTIMATE &' = -115. COMPARE TABLE 7.1	SULS, DESIGN, OF CO. UNINATION S' BASI 4 (NGO) EQNI Relative I	ESTIMA MANUA MATE MATE MANTE MANTE ED ONE 7 + 20° 1) with Density of	TE DR 2 72 2 Sorls 2 Sorls (SPT C (HAN 7 YPICA Cohesion	ANNED S USING S' CALACIAL URRELATES MALIAKA AN AL VALVES Ness Soils	TRENGTH TABLIE CUTWASH SNIS AND ID UCHID	V4LUE 1 - 'T SAND ERAN A, 1996 HED BY	5 FRU YPICAL \$ GRA V SIZK SCHRUK	VEL) ANALYS
4) / / / / / / / / / /	FUL FILL NAUFAC PROPRETIES WULAR FU ESTIMATE d'= -115. COMPARE TABLE 7.1 Relative Der	SULS, DESIGN, OF CO. UNINATION & BOS 4 (NGO) E Q.N Relative I Wity A	ESTIMA MANUA MACTE MACTE $1 \rightarrow 20^{\circ}$ $1 \rightarrow 17$ Density of pproximate	TRE DR 2 7.2 3 Soils iers (SDT C. (HAN 7YPICA Cohesion	ANDED S Sincy Sincy RESLATES TRALIAKA AN AL VALLES TIESS Soils N60 Standas	TRIENIG TH TABLIE CUTUMSH ans Anis ID UCHID IESTABLISI TA App	V4LUE, 1 — 'T 5.A~ID E,RAII A, 1992 thED B-1 roximate Ai	5 PRU YPICAL \$ GRA 1 SIZIS SCHRWE ngle of Frict	MEL) ANALYS ARER IET , tion
4) / / / / / / / / / / / / /	FUL FILL MAUPAC PROPRETIES AULAR FO ESTIMATE O' = -115 COMPARE TABLE 7.1 Relative Der Designation	SULS, DESIGN, OF Co. OF Co. V Co. SOS 4 (NGO) E Q N E Q N E Q N Relative I Sity Aj Ymourt (Pug	ESTIMA MANUA MATE MATE $MANUAMANUAMANUAED AN1 + 20^{\circ}1 + 20^{\circ}$	TRE DR 2 7.2 3 Sorls 10 RS (SPT C (HAN 7 YPICA Cohesion % P	ANDED S Sincy Sincy S' Sincy Sinc	TRENGITH TABLIE CUTUATSH ANIS ANIS ID UCHID ESTABLISI TA App istance	V4LUE 1 — 'T 5A~1D 5A~1D 5A~1A 5A~1A 1990 thED B-1 roximate As of Soil ф,	5 PRU YPICAL \$ GRA V SIZIS SCHRONS ngle of Fricing degrees	NEL) ANALYS ANALYS
4) / / / / / / / / / / / /	FUL FILL MAUFAC PRUPKETTES NULAR FO ESTIMATE COMPARE TABLE 7.1 Relative Der Designation Very loose	Soves, DESIGN, OF Co. OF Co. V. Co. Sove Sove Sove Sove Sove Sove Sove Sove	ESTIMA MAXUM MAXUM MAXUM MAXUM MAXUM MAXUM MAXUM ED MAXUM M	TE DR 2 7.2 3 Sorls 3 Sorls (HAN 4 TYPICA Cohesion % P	ANNED S Sincy S CALACIAL RRIELATES ITALIAKA AN AL VAWES New Standa s Penetration Resi 0-4	TRENG TH TABLIE CUTWHSH SNIS AND HIS UCHIA IESTABLISH rd App istance	V4LUE, 1 — 'T SA~ID E,PA , 1992 thED I3-1 roximate An of Soil ф, 25:	5 FRU YPICAL 4 GRA 1 SIZIS SCHRONE ngle of Frict degrees -28	VEL) ANALYS DER IET I
4) / / / / / / / / / / / / / / / /	FUL FILL NAUFAC PROPRETIES NULAR FU ESTIMATE d'= -115. COMPARE TABLE 7.1 Relative Der Designation Very loose Loose Media	Soves, Design, Design, Design, Design, Design, Social Soci	ESTIMA MAXINA MATTE MATTE MATTE MAXINA	TE DR 2 7.2 3 Soils 3 Soils (HAN 7 YPICA Cohesion % P	ANDED S USING S (4+ACIAL) URRELATES (7A+IAKA AN) AL VAWES nless Soils N_{60} Standar Penetration Resi 0-4 4-10 10.20	TRIENIG TH TABLIE CUTUMSH SWS MNIS 113 UCHIA IESTABLISI rd App. istance	V4LUE, 1 - 'T SAND E,RAN A, 1990 thED BY roximate An of Soil &, 25. 28. 28.	5 FRC YPICAL YPICAL SIZE SCHROF SCHROF Aggrees -28 -30	VEL) ANALYS ARER IET of
4) / / / / / / / / / / / /	FUL FILL AIAUPAC PROPRETIES PROPRETIES COMPARE COMPARE TABLE 7.1 Relative Der Designation Very loose Loose Medium Dense	SSNLS, DESIGN, OF CO. OF CO. OF CO. E CO.	ESTIMA MAXUA MAXUA MACTE MAXUA MAXUA	TRE DR 2 7.2 3 SOILS 11CRS (SDT C. (HAN 7YPICA Cohesion % P	ANDED S USING SING SING SING SING SING NECON ALPACIAL ARELATES ITALIAKA AN ALVAWES NGO Standas Penetration Resi 0-4 4-10 10-30 20.50	TRIENIG TH TABLIE CUTUASH ANIS ANIS ID UCHID IESTABLISI rd App. istance	V4LUE, 1 — 'T 5.4~1D E,RA11 A, 1990 thED II roximate As of Soil ф, 25. 28. 30. 25. 28. 30. 25. 28. 30. 25. 28. 30. 25. 28. 30. 25. 28. 30. 25. 25. 25. 25. 25. 25. 25. 25	5 PRU yprcAL yprcAL ScAR S	VEL) ANALYS ANALYS
4) / / / / / / / / / / / / / / / / / / /	FOR FILL AIAUPAC PROPRETUES PROPRETUES COMPARE COMPARE TABLE 7.1 Relative Der Designation Very loose Loose Medium Dense Very dense	SSNLS, DESIGN, OF Co. OF Co. Co. Co. Co. Co. Co. Co. Co. Co. Co.	ESTIMA MAXUM	TRE DR 2 7.2 3 Sorts 1ERS (SPT C (HAN 7YPICA Cohesion % P	ANDER S USING S $C \leq LACIAL$ URRELATES TALIAKA AN AL UAWES New Standay New Standa	TRENIGITH TABLIE CUTUMSH SNIS ANIS ID UCHID IESTABLISI rd App. istance	V4LUE, 1 — 'T 5A~ID 5A~ID 5A~ID 7 A, 1996 theD I3-1 roximate An of Soil ф, 25- 28- 30- 36- >	5 PRC $\gamma PICAL$ $\gamma PICAL$	NEL) ANALYS DER IET I

D ON	Project/Proposal No. 01/1/497.013	Calculated By	MTR	Date	6-29-09
8471 1000	Project/Proposal Name CARDINAL ASH PULI	Checked By	MLIZ	Date	7-2-09
1011	Subject STRENGTH S PERM PARAMETERS	Sheet _2	of <u>8</u>		

+ PERMEABILITY - EMBANKMENT FILL: ESTIMATE PERM BASED ON RESULTS FROM FLER WALL PERMEABILITY TEST DERFORMETS ON UNDISTURBED SAMPLE. ESTIMATE PREM. HEALTER THAN TEST VALUE & ACCOUNT FOR PERMETRILITY ON A MACRO SCALE, AS WILL AS ACCOUNTING FOR SAMPLES WITTH A HIGHER GRANIULAR CONTIENT. -> ADJUST K, K-/KIH RATIO DURING ADIANSIS TO MATCH MELD CONDITIONS. - ORIGINAL EMBANKMENT FILL ? MATURAL ENTESINE LAVERS ESTIMATE REEM. BITSED ON TYPICAL PUBLISITED VALVES USING SOIL DESCRIPTIONS & GRAIN SIZE ANIALYSIS - GRANIULAR FUNDATION LAVERS ESTIMATE PERMEABILITY SASED ON TYPICAL PUBLISHED LALVES BASED ON RELATIVE DENSITY & GRAM! SIZE ANALYSIS. AS A GUIDE, USE K= (100 DID) USEE (cm x10-4/SEC) (HAZEN) ALSO USE dis VALUE AND COMPARIE MAPICAL RAMGE OF PERMEABILITY BASTED ON GRAIN SIZE (GEOSYNTEL, 1991) **PLATE 9**

 \bigcirc

N	Project/Proposal No. 011.11497. 013	Calculated By	MTR	Date	6-29-09
1 0	Project/Proposal Name CARDINAL ASH POND	Checked By	MGR	Date	7-2-09
1	Subject STRENGTH & PERM. PARAMETERS	Sheet 3 of	8		

-	
	- DESCRIPTION: CONTRINES ZUNIES AND PUCKETS OF THE FOLLOWING
	1) MED DENSE TO DENSE BROWN AND GRAY FINE TO
	COARSE GRAVIEL SOMIE FINE TO COARSE SAND, SOME TO
	"AND" SILTY CLAY
	2) SOFT TO HARD BROWN AND GRAY SILTY ELAN
	SOME FINE TO COARSE SAND, SOME FINE TO COARSE ERAN
4.00	
	NGO VALUES (IN GRANULAR ZONES)
	Low: 16
	HIGH: 50
	Avg: 26
- +	IAND PENETROMETER (ON SAMPLIES EXITING COMESION)
	17= 0.0 - 4.5+ tsf
-	STRIENGTH PARAMETER :
-	
	IF CONSIDERED GRANULAR, \$= 34-35° BASED ON TARLIE 71
	AVERAGIE NGO-VALUE. ADJUST FOR HIGH FINE CRANKED FU
	$SAY q' = 32^{\circ}$
) CURRELATION TO SMARK CHARTS
	- FUR CORRELATION, CONSIDER BOTH ON = 50 KRO AND ION FR
	- FUR CORRELATION, CONSIDER BOTH ON = 50 KPQ AND 100 KPg TO ACCOUNT FOR PROBABLE DEPITH OF FAILURE SUPERIE
	- FOR CORRECATION, CONSIDER BOTH QU'S = 50 KPQ AND 100 KPQ TO ACCOUNT FOR PROSABLE DEPTH OF FAILURE SURFACE. - RESULTS: QS'= 31° (SEE CORRELATIONS THIS APPENDIX)
	- FUR CORRELATION, CONSIDER BOTH \$10 = 50 KPq AND 100 KPq TO ACCOUNT FOR PROBABLE DEPITH OF FAILURE SWRFACE. - RESULTS: \$2 = 31° (SEE CORRELATIONS THIS APPENDIX)
2	- FOR CORRELATION, CONSIDER BOTH Øro = 50 KPq AND 100 KPq TO ACCOUNT FOR PROBABLE DEPITH OF FAILURE SURFACE. - RESULTS: 95'= 31° (SEE CORRELATIONS THIS APPENDIX)) GRAPH OF Ø' VRS PI:
2	- FOR CORRELATION, CONSIDER BOTH \$100 = 50 KPq AND 100 KPq TO ACCOUNT FOR PROBABLE DEPITH OF FAILURE SURFACE. - RESULTS: \$\$\$'= 31° (SEE CORRELATIONS THIS APPENDIX)) GRAPH OF \$\$' URS PI: - RESULTS: \$\$\$'= 33° (SEE CHART THIS APPENDIX)
7	- FOR CORRELATION, CONSIDER BOTH \$100 = 50 KPq AND 100 KPq TO ACCOUNT FOR PROBABLE DEATH OF FAILURE SWEFACE. - RESULTS: \$45' = 31° (SEE CORRELATIONS THIS APPENDIX)) GRAPH OF \$1' URS PI: - RESULTS: \$4' = 33° (SEE CHART THIS APPENDIX)
3	- FOR CORRECATION, CONSIDER BOTH \$100 KPA TO ACCOUNT FOR PROSABLE DEPTH OF FAILURE SWERACE. - RESULTS: \$4' = 31" (SEE CORRELATIONS THIS APPENDIX)) GRAPH OF \$1' URS PI: - RESULTS: \$4' = 33" (SEE CHART THIS APPENDIX)) \$4 A FOR FILL SOLD
3	- FOR CORRELATION, CONSIDER BOTH \$100 = 50 KPq AND 100 KPq TO ACCOUNT FOR PROBABLE DEATH OF FAILURE SURFACE. - RESULTS: \$\$\$'= 31° (SEE CORRELATIONS THIS APPENDIX)) GRAPH OF \$100 KPT: - RESULTS: \$\$'= 33° (SEE CHART THIS APPENDIX)) M/A FOR FILL SOILS
3	- FOR CORRECATION, CONSIDER BOTH Øro = 50 KAQ AND 100 KAD TO ACCOUNT FOR PROBABLE DEPITH OF FAILURE SURFACE. - RESULTS: 9/2 = 31° (SEE CORRELATIONS THIS APPENDIX)) GRAPH DF Ø' VRS PI: - RESULTS: Ø' = 33° (SIEE CHART THIS APPENDIX)) NAVFAC TABLE 1:
3	- FOR CORRECATION, CONSIDER BOTH $\phi_{v_0} = 50$ KPq AND 100 KPA TO ACCOUNT FOR PROSABLE DEPTH OF FAILURE SWEFACE. - RESULTS: $\phi_{rs} = 31^{\circ}$ (SEE CORRELATIONS THIS APPENDIX)) GRAPH OF ϕ' URS PI: - RESULTS: $\phi' = 33^{\circ}$ (SEE CHART THIS APPENDIX)) h_{i}/A FOR FILL SOILS) h_{i}/A FOR FILL SOILS) NAVEAC TABLE 1: <u>GROUP</u> SOIL TYPE TVP STREMENT
3	- FOR CORRECTATION, CONSIDER BOTH Ørd = 50 KPg AND 100 KPg TO ACCOUNT FOR PROBABLE DEPITH OF FAILURE SURFACE. - RESULTS: Ørs = 31° (SEE CORRELATIONS THIS APPENDIX)) GRAPH DF Ø' URS PI: - RESULTS: Ø' = 33° (SEE CHART THIS APPENDIX)) NAVFAC THIS SOILS) NAVFAC THISLE 1: <u>GROUP SOIL TYPE</u> <u>GC</u> CLAYEY GRAVEL (120 d' 200
3	- FOR CORRECTATION, CONSIDER BOTH \$100 KPA TO ACCOUNT FOR PROBABLE DEPITH OF FAILURE SWRFACE. - RESULTS: \$\Phi_s' = 31° (SEE CORRELATIONS THIS APPENDIX)) GRAPH OF \$\Phi' & URS \$PT: - RESULTS: \$\Phi' = 33° (SEE CHART THIS APPENDIX)) \$\Phi A FOR FILL SOLS) \$\Phi A FOR FILL SOLS) \$\Phi A FOR SOLL TYPE GC CLAYEY GRAVEL SC CLAYEY SANDS \$\Phi' = 33° (S' > 31° THE C'= 0, \$\Phi' > 31° T
3	- FOR CORRELATION, CONSIDER BOTH \$100 KPA TO ACCOUNT FOR PROBABLE DEPTH OF FAILURE SURFACE. - RESULTS: \$\Phis' = 31° (SEE CORRELATIONS THIS APPENDIX)) GRAPH DF \$\Delta' URS PT: - RESULTS: \$\Delta' = 33° (SEE CHART THIS APPENDIX)) \$\Phi A FOR FILL SOILS) \$\Phi A FOR FILL SOILS) NAVEAC THISLE 1: \frac{GROUP SOIL TYPE}{GC CLAYEY GRAVEL C'=0, \$\Delta' = 31° \$TREMGITH (Confise CL FNORG CLAYES OF LOW - MED DI \$\Phi'= 770 \$\Phis \$\Phi'= 31°
3	- FOR CORRELATION, CONSIDER BOTH $\phi_{v_0} = 50$ KPq AND 100 KPq TO ACCOUNT FOR PROBABLE DEPITH OF FAILURE SWERACE. - RESOLTS: $\phi_{ps} = 31^{\circ}$ (SEE CORRELATIONS THIS APPENDIX)) GRAPH DF $\phi' = 33^{\circ}$ (SEE CHART THIS APPENDIX)) GRAPH DF $\phi' = 33^{\circ}$ (SEE CHART THIS APPENDIX)) NAVFAC THISLE 1: <u>GROUP SOIL TYPE</u> <u>TYP STREMGTH</u> (Conse <u>GC</u> CLAYEY GRAVEL <u>SC</u> CLAYEY GRAVEL <u>C'=0, $\phi' = 31^{\circ}$ 71 <u>C'=230 psf</u>, $\phi' = 31^{\circ}$ 71 <u>CL</u> THORG CLAYS OF LOW - MED P1 C'=270 psf, $\phi' = 28^{\circ}$ 71</u>
3	- FOR CORRECTATION, CONTSIDER BOTH \$\$100 KPA TO ACCOUNT FOR PROBABLE DEPITH OF FAILURE SURFACE. - RESOLTS: \$\$4' = 31° (SEE CORRECTATIONS THIS APPENDIX)) GRAPH DF \$\$' VRS PI: - RESOLTS: \$\$5' = 33° (SEE CHART THIS APPENDIX)) \$\$14 A FOR FILL SOILS) NAVFAC TABLE 1: GROUP SOIL TYPE TYP STREMGTH (CONSE GC CLAYEY GRAVEL C'=0, \$\$'731° TH SC CLAYEY GRAVEL C'=0, \$\$'731° TH SC CLAYEY SAMDS CL INORG CLAYS OF LOW - MED PI C'=270 pof, \$\$'28° TH DESIGNS STREMGTH : C'=0, \$\$'5 \$\$'28° TH
3	- FOR CORRECATION, CONSIDER BOTH $\phi_{v_0}' = 50 \text{ KPq}$ AND 100 KPA TO ACCOUNT FOR PROBABLIC DEPTH OF FAILURE SWRFACE. - RESULTS: $\phi_{s}' = 31^{\circ}$ (SEE CHART THIS APPENDIX)) GRAPH DF ϕ' URS PT: - RESULTS: $\phi' = 33^{\circ}$ (SEE CHART THIS APPENDIX)) MARTAC THIS OF FILL SOLS) NAVEAC THISLE 1: <u>GROUP SOL TYPE</u> <u>GC</u> CLAYEY GRAVEL <u>SC</u> CLAYEY GRAVEL <u>SC</u> CLAYEY SANDS CL FNORG CLAYS OF LOW - MED PI C'= 270 psf, $\phi'=31^{\circ}$ TI DESIGN STRENGTH: C'= 0 psf, $\phi'=31^{\circ}$
- F	- FOR CORRELATION, CONSIDER BOTH QU'S = 50 KIR AND 100 KIR TO ACCOUNT FOR PROBABLIC DEPITH OF FAILURE SWRFACE. - RESOLTS: Q'S = 31° (SEE CORRELATIONS THIS APPENDIX)) GRAPH OF Q' VRS PT: - RESULTS: Q' = 33° (SIEE CHART THIS APPENDIX)) MAVFAC THES OILS) NAVFAC THESE 1: <u>GROUP SOIL TYPE</u> <u>GC</u> CLAYEY GRAVEL <u>SC</u> CLAYEY GRAVEL <u>SC</u> CLAYEY SANDS <u>CL</u> FNORG CLAYS OF LOW - MED PI C'= 270 psf, Q'= 28° 71 DESIGN STRENGTH: C'= 0 psf, Q'= 31° ERMEABILITY: BASED ON PREMICADULC CORRECTIONS
3	- FOR CORRELATION, CONSIDER BOTH \$\$100 KPA TO ACCOUNT FOR PROBABLE DEPITH OF FAILURE SURFACE. - RESULTS: \$\$\$2 = 31° (SEE CORRELATIONS THIS APPENDIX)) GRAPH OF \$\$' URS PI: - RESULTS: \$\$\$' = 33° (SEE CHART THIS APPENDIX)) ALA FOR FILL SOLS) NAVFAC TABLE 1: GROUP SOLL TYPE GC CLAYEY GRAVEL C'=0, \$\$' 731° TH COMSE GC CLAYEY GRAVEL C'=0, \$\$' 731° TH C'=230 FSF, \$\$'=31° SK: CL INORG CLAYS OF LOW - MED PI C'=270 PSF, \$\$'=28° TH DESIGN STRENGTH: C'=100 PSF, \$\$'= 31° ERMEABILITY: BASED ON PERMEMBILITY CORRELATIONS + NIPICAL PLANCE OF PERMEMBILING USH KUZ 1X10°5 Color

 \bigcirc

ON	Project/Proposal No. 011. 11497. 013	Calculated By MITR Date 6-29-09
71 000	Project/Proposal Name CARDINAL ASH POND	Checked By Man Date 1-2-09
111	Subject STRIENGATH & PENN PARAMETTERS	Sheet _ 4_ of _ 8

					f u pur to 14		
	DESCRIPT	1024 : · : SI	LTY CLAY	TO HARD (USCS	BROWN : LEAN	MOTTLED WM CLAY)	t Gray
- /	NAMD DE;	HETROME.	TER RANG	12: 1.5	- 4.5 tst	0	
- 9	STRENGTT	PARAM	ETTER :				
	1) CURRI CUNI TO	ELATIONE SIDER G TTHE FI	TO STARK Svo = 50 K AILURE PL	C CHARTS Pa BASED ALIE.	S ON RIE	LATION DIE 7724 -LAYER	15 LAYE
	- 101250	PLIS . PFS	SER COR	REHATION T.	1+15 APPENDI	2	_
	2) ¢'	VRS PI	- P				
	3) H/A	A FOR ,	FILL SOILS	, ø	- 30	(SEE CHART	THIS APP
	4) NA	VFAC 1 GROUP	TAISLE SOIL TYPE			TYP UNDRAMI STRIENGTH	EP TYP (cm/s
		CL	INORGAN TO MIED	IC CLANS PLASTICITY	of Lon	$4' = 28^{\circ}$	F 7 10
De	SIGN STR	cience. TH	PARAMETE	2: c'=	100 psf,	¢'= 30°	
- PERM	IEABILITY	':					
	FLEX WA	LL PIERIM	6431117 F	est perm	olmed.	ant sample ?	57-6A
-	RESULTS	Kv = -	7.42 × 10	⁸ cm/sec			
1	DESIGN :	USE K MACRO	v = 1×10-7 SCALIE.	cm/sec	TO ACCOUN	IT FOR PERM.	on A
		=7 Ku Dur	ADJUSTED INCE SIEIEDA	TO SXIC GE ANIALY	5-8 cm/sec 1515	- WITH KH/K	- = 5

N	Project/Proposal No. 011. /1497.013	Calculat	ted By	M	TR	Date	6-29-09
)	Project/Proposal Name CARDINAL ATH POND	Checke	d By_	N	16n	Date	7-2-09
5	Subject STRENGTH & PERM.	Sheet	5	of	8		

LAYER: ALLUVIUM SILT & CLAY - DESCRIPTION: USRY LOOSE TO MED DELASE GRAY SILT, CONTRINS ZONIES OF STIFF TO HARD SILTY CLAY AND THIN! LAVERS OF VERY LOOSE TO LOOSE FINE TO COARSE SAND - NGO RANGE: O TO 27, AUG = 8 Spf - HAND PENETROMIETER: O-3,5 ESP ON SICL SAMIPLIES - STRENGTH PARAMETERS 1) STARK CORRELATION! - CONSIDER BOTTH QUO = 100 KP- AND 400 KPQ WITH TENDANCY TUNARD 100 KPa - RESULT : \$ 1/5 = 30" (SEE CORNELATION FITS APPENDIX) 2) \$' VRS PI - RESOLTS: FOR PI=15, \$'= 31.5" (SEE CHART THIS APPENDIX) 3) HALL'S THESIS 4'NC = 36 - 0.2665 (70 CLAY) FOR CF = 10.9, Q'NC = 33° 4) N/A FUR NATURAL SOILS - USE TABLE 3.28 - COMMONDE PROPERTIES OF CONTERENTLESS SOILS (SOURCE - FOR 'LOOSE INCORGANIC SILTS' Q'= 27° Design Strength Parameter: Use Onc = 30°, c' = 0 psf - Permeability: Based on soil description Ky= 1x10-5 cm/s (typical published value)

ON	Project/Proposal No. 01/11/497.015	Calculated By MR	Date <u>6-29-09</u>
471 000	Project/Proposal Name CARDINAL ASH POULD	Checked By	Date 1-2-9
226 011	Subject STRENGTH & PERMEABILITY	Sheet 6 of 8	

LAYER: ORGANIC CLAYEY SILT - DESCRIPTION : VERY SOFT TO STIFF ORGANIC CLAYEY SILT, CULIDONS SEAMS OF VERY LOOSE ORGANIC SILT * - LOSS ON EGNIMONS : RANGE = 7.9% TO 10.4% FROM 3 SAMPLES TESTED. - HAND PENKTROMETER: 0.0 - 1.25 Est STRENGTH PARAMETTER: 1) STARK GRRELATION : - CONSIDER Qu'S = 100 KPg AND 400 KPg WITH TENDANCY TOWARD 100 KPG - RESULTS: \$ = 26° (SIZE CORRELATION THIS MAPPENDIX) 2) & URS PI - RESULTS: FUX PI = 16, Q'= 31° (SEL CHART THIS APPENDIX) 3) HALLIS THESIS \$'NC = 36 - 0,2665 (2 CLAY) FOR CF= 16, Bug = 31.7° 5) CU TRIAXIAL TEST - SAMPLE WAS NOT DESCRISED AS 'ORGANIC', BUT DESCRIPTION BEST MATCHES THIS LAVER RESULTS: \$'=36.9", C'= 110" psf - PERMERBILITY: DIS - Low = 0.0015 KV = 5 ×10-6 cm/s 141GH = 0.005 (GIEDSYNTEC, SEE AVG = 0.0023 (GIEDSYNTEC, SEE APPENDIX (4 SAMPLES TOG COARSE FOR DIS- VALUE * PER FHNA GEC 5, LOI & 20% 2016 PROPERTIES CONTROLLED 37 NON-ORGANIC PURTION .: REGULAR CORECLATIONS OK \$=30°, c'=0 psf DESIGN STREERGTH PARAMETER :

 Project/Proposal No.
 O//.
 1/1497.013
 Calculated By
 M/TR
 Date
 6-29-09

 Project/Proposal Name
 CARLANAL
 ASH
 Pok/A
 Checked By
 M 4/R
 Date
 1-2-09

 Subject
 STRIEAGTH
 S
 PERM.
 Sheet
 7
 of
 8

and the second sec				1. 6. 1.			
- DESCRIPTION : 1	VERY LOOSE	70 L	oose Bro	Why AN	is ay	FINE	70
	MEDIUM :	SANI),	TRACE TO	Some	SILT U	R INIT	ERBEDI
	WITH SILT	, FEW	SEAMS	SF SI	LTY Ch	AV	
					æ'		
- NGS BANGE:	k			EQN 7	2	MADLE	7.1
	Low	4		27.8		23°	
	HIGH	29		41.1		35-3	6°
	Avg	12		33.6		30-3	10
	_						
	USIE	\$ =	29°	? c'	-0		
- PERMEABILITY	: USE GR	AIN SI	ZE ANAU	LYSIS	<u>[</u>]	- la de-	1
· BORING CU-	PZ-BAP-0	1904,	SAMPU	E 21,	A15 ≈ 0	06	
$K_{V} = 1$	x10-2 cm/s	(See	appendix	-> Geo	syntec, 19	191)	
							N
그 [- 아니 집 - 것도 한 - 것 - 데)(-							1
						-	
+ LAYER : MED DE	INSIE GLA	cial .	wrend sh!	54212	GRAM	<u>=2</u>	
+ LAYER : MED DE - DESERIPTION :	MED DENSE COARSE GR	CIAL . 75 D AVEL	ENSE BEC AND JEIN	SAND WH AN JE TO	: GRAM D GRAM MED SA	<u>ε</u> ζ 1 Γιλικ λΙΙΔ,	- 78
+ LAYER : MED DE - DESCRIPTION :	MED DENSE COARSE GR	CIAL . 75 D AVEL	erse Be Anis 1=11	SAND MUNI ANI NE TO	SGRAM D GRAY MED SA	<u>ε</u> ζ / Γιλικ λιίζ,	- 78
+ LAYER : MED DE - DESCRIPTION :	MED DENSK COARSE GR	CIAL . TS D AVEL	SNSE BRO	SAND MAN ANI NE TO LE TO	: GRAM D GRAY MED SA	<u>e</u> Z / Fiair alid,	- 78
+ LAYER : MED DE - DESCRIPTION :	MED DENSK COARSE GR	CIAL . TS D AVEL	ENSE BEC ANIS IFIN EQN	54~12 NE TO 22	: GRAM D GRAM MED SA TABLE	<u>EZ</u> / FIXIK XIIZ, 7.1	- 78
+ LAYER : MED DE - DESCRIPTION : - NIGO RANGLE :	MED DENSE COARSE GR	CIAL . TS D AVEL 14	ENSE BEC ANIS ISIN EQN EQN 34.7	5411) MAN ANI NE TO 22	SGRAM D GRAY MED SA <u>MED SA</u> <u>MED SA</u> <u>JABLE</u> <u>3/-32</u>	<u>EZ</u> / FIAIR AID, 7.1	78
+ LAYER : MED DE - DESCRIPTION : - NIGO RANGLE :	MED DENSE COARSE GR LOUS 141GEH	CIAL . TS D AVEL 14 69	ENSE BEC ANID IEIN EQN - 34.7 52.6	54×10 1000 ANI 1E TO 12	: GRAM D GRAM MED SA TABLE 31-32 741	<u>ε</u> /	- 78
+ LAYER : MED DE - DESCRIPTION : - NIGO RANGLE :	MED DENSE COARSE GR LOUS HIGH AVE	CIAL . 75 D AVEL 14 69 32	ENSE BLC ANIS 1=11 EQN 34.7 52.6 47.2	SAND WAL AND JE TO L' TZ	5 GRAM D GRAM MED SA TABLE 3/- 32 7 4/ 36°	<u>ε</u> γ Γιλικ λιίδ, 7.1 2	5 78
+ LAYER : MED DE - DESCRIPTION : - NIGO RANGLE :	LOWSE GR MED DENSE COARSE GR LOWS ItiGe H AVG	<u>ciac</u> 75 A 24/EL 14 69 32	ENSE BEC ANID 1511 EQN - 34.7 52.6 472.2	SAND WW ANI VE TO VE TO	SGRAM D GRAM MED SA <u>TABLE</u> 31-32 741 36°	<u>ε</u> γ Γιλικ λιίζ, 7.1 2	78
+ LAYER : MED DE - DESCRIPTION : - NGO RANGE :	MED DENSE COARSE GR LOW HIGH AVG	CIAL . 75 D AVEL 14 69 32 USE	ENSE BEC ANID 1=11 EQN - 34.7 52.6 472.2 Ø' = 3	54~12 NE TO 22	: GRAM D GIRAM MED SA TABLE 31-32 741 36°	EZ / FIXIX XIIZ, 7.1 2°	- 78
+ LAYER : MED DE - DESCRIPTION : - NIGO RANGLE :	LOWSIC GRANDE MED DENSE COARSE GR LOUS ItiGH AVG	CIAC . 75 D AVEL 14 69 32 USE	ENSE BEC ANIS 1=11 EQN 34.7 52.6 42.2 Ø' = 3	5411) MAI ANI ME TO 22 72	5 GRAM D GRAM MED SA TABLE 3/- 32 74/ 36°	EZ / FIAIR AID, 7.1 20	78
+ LAYER : MED DE - DESCRIPTION : - NIGO RANGLE :	LOW MED DENSK COARSE GR LOW HIGH MG	21AL . 75 D AVEL 14 69 32 USE	ENSE BEC ANID 1=11 EQN - 34.7 52.6 42.2 B' = 3	54~1) NUN ANI NE TO 22	: GRAM D GRAM MED SA 7475LE 31-32 741 36°	<u>ε</u> / Fiλik λιι], 7.1 2°	- 78
+ LAYER : MED DE - DESCRIPTION : - NGO RANGLE : Permeability:	MED DENSE COARSE GR LOUS HIGH AVEL BOR	IL USE	ENSE BEC ANIS 1=11 EQN 34.7 52.6 47.2 B' = 3 SATRIPLE	5411) MUNI ANI JE TO 22 12 12 12 12 12	: GRAM D GRAM MED SA TABLE 3/-32 74/ 36° ! C'=	EZ x Fixik x112, 7.1 2°	5 78
+ LAYER : MED DE - DESERIPTION : - NGO RANGE : Permeability:	LOWSIC GLAN MED DENSK COARSE GR LOWS 141G1 H MVG BOR DC	21AC . 75 AVEL 14 69 32 USE USE UNIG RO 3	ENSE BEC ANIS 1=11 EQN - EQN - 34.7 52.6 42.2 Ø' = 3 SATRIPLE S-11	5411) MAL ANI ME TO	SGRAM D GRAM MED SA TABLE 31-32 741 36° C'=0 (Se	EZ / FILLO NID, 7.1 2° 0 20 20 20 20 20 20 20 20 20	endix
+ LAYER : MED DE - DESCRIPTION : - NGO RANGE : Permeability:	MED DENSE COARSE GR LOW HIGH AVG BOR OG	CIAL . TS D AVEL 14 69 32 USE USE CINICA ROJ 205	ENSE BED ANIS JEIN EQN EQN EQN 34.7 52.6 472.2 B' = 3 SATRIPLE S-11 S-13	54~10 NE TO 22 4 0,09 0,19	: GRAM D GRAM MED SA TABLE 31-32 741 36° ! C'=0	EZ / FIXIX NID, 7.1 2° 0 20 20 20 20 20 20 20 20 20	endix
+ LAYER : MED DE - DESCRIPTION : - NIGO RANGE : Permeability:	MSC GLAN MED DENSK COARSE GR LOUS HIGH AVG BOR DG DG DG DG DG DG	CIAL . 75 D AVEL 14 69 32 USE USE UNE 03 705 906	ENSE BEC ANIS 1=11 EQN 34.7 52.6 47.2 B' = 3 SAMADLE S-11 S-13 S-24	5411) NE TO 22 72 4 0.09 0.19 0.6	5 GRAM D GRAM MED SA TABLE 3/- 32 7 4/ 36° 1 C'=0 (Se	EZ / FINIX NID, 7.1 20 20 20 20 20 20 20 20 20 20	endix
+ LAYER : MED DE - DESCRIPTION : - NIGO RANGE : Permeability:	LOWSIC GLAN MED DENSK COARSE GR LOW ItiGH AVG BOR DG OG	CIAL . TS A AVEL 14 69 32 USE USE CINIG RO3 RO3 RO3 RO5 906 807	ENSE BEC ANID JEIN EQN - EQN - 34.7 52.6 42.2 Ø' = 3 SANGPLE 5-11 S-13 S-24 S-13	5411) 15 TO 15 TO 17 17 17 17 17 17 17 17 17 17	SGRAM D GRAM MED SA <u>TABLE</u> 31-32 741 36° C'=((Se	EZ / FIAIR AID, 7.1 2° 20 20 20 20 20 20 20 20 20 20	endix
+ LAYER : MED DE - DESCRIPTION : - NGO RANGE : Permeability:	MSC GRANNE MED DENSE COARSE GR LOUS HIGH AVG BOE DC DC OG OG OG	CIAL . TS D AVEL 14 69 32 USE USE CINIG ROJ 706 ROJ 102	ENSE BEC ANIS JEN EQN EQN 34.7 34.7 52.6 472.2 Ø' = 3 SATUPLE S-13 S-24 S-24 S-24	5422 15 TO 15 TO 2 17 17 2 19 0, 19 0, 25 0, 09 0, 00 0, 00 0 0 0 0 0 0 0 0 0 0 0 0	SGRAM MED SA MED SA MED SA MED SA 741 36° 'C'=((Se	<u>ε</u> 2 / FIλIE λΙΙΣ, 7.1 2° 20 20 20 20 20 20 20 20 20 20	endix

Project/Proposal No. 01/. 1/497. 013	Calculated By MTR	Date 7/15/09
Project/Proposal Name CARDINAL ASH POND	Checked By	Date
Subject SEISMIC STRENGTH PARAMETERS	Sheet <u>8</u> of <u>8</u>	

RERFUER S	EISMIC STABILITY AN	JALYSIS WIT	nt A PSEUD	DSMATIC APPROM
=7	APPLY HUXIZONITAL	Land TO ST	ATIC MODIEL .	FRUAL 70
	THE PEAK HOKIEDNIT	AL ACCELERA	TION, Q, D	ETTIMANTED
	FROM SEISMIC HAZAR	is MAPPILLE		
	ORIGINAL			
- ASSUM	EN EMBANKINKAIT FIL	C LAYER WIL	L KAHABIT	UNIDIRAINIED
REYON.	LISE DURING AND EASTERT	GUARE EVEN		
PROPER	USE USACE K	CAUCLORE IS ,	HONIEL 1175 S	TRIENLGO7M
That ex	11105.			
SINCE	No CU TEST DATA	A IS AVAILARIUS	FOR THE OPI	GINAL FILL
COMPARE	INDEX TESTING THE	SULTS TO VALU	ES PRESENTED	BY
DUNCON	AND WRIGHT (2005)	FOR 'R' TEST	- RESULTS.	
BASEL) due comparison,	USE THE FULL	wineg stream	ATTA VALUES
	LAYER	Č	<u>é</u>	
				SER TABLE 10.3
ORIGINIAG	- REMIBANK MIEMT FILL	50 pst	22°	ON FOLLOWING PG
All The	- PEDENDAUED ILL G	21. CISI CANE	R - M=	1144 1 SPhr mark
X-10DEL	STRINGTHS FOR SKISMIC			
/				
CVEC	$cls \rightarrow c = lc$	30 psf d=	240	
ALLUNUM	& GLACIAL SUTWASI	4 FULLIDATION	LAVIERS WILL	LIKELY EXHIBIT
DRAINIED	STRENGTHS DURINEL	IZARITHOUAKE.	: USE PARAMA	ETTRS DEVELOPED
FOR PRAIN	IRD ANALYSIS			
NEWER A	MIBANKMENT FILL	LAYER HAS SU	SFRICIENT GAN	AMULAR MATERIA
TO ASSUN	TE IT WILL EXMIRE	F A DRAINED	RESPONSE	

Soil no.	Description and reference	Index properties	c' (psf)	φ' (deg)	c _R (psf)	ϕ_{R} (deg)	d∝ (psf)	ψ ^b (deg)
1	Sandy clay (CL) material from Pilarcitos Dam;	Percent minus No. 200: 60–70 Liquid limit: 45	0	45	60	23	64	24.4
	envelope for low (0–10 psi) confining pressures. (Wong et al., 1983)	Plasticity index: 23	ORIC	SE C=	- EM 50 psf , P1 =	BANKN 7 p=. 24	aiente 220	
2	Brown sandy clay from dam site in Rio Blanco, Colorado (Wong et al., 1983)	Percent minus No. 200: 25 Liquid limit: 34 Plasticity index: 12	200	31	700	15	782	16.7
3	Same as soil 1 except envelope fit to 0-100 psi range in confining pressure (Wong et al., 1983)	Percent minus No. 200: 60–70 Liquid limit: 45 Plasticity index: 23	0	34	300	15.5	327	16.8
4 .	Hirfanli Dam fill material (Lowe and Karafiath, 1960)	Percent minus No. 200: 82 Liquid limit: 32.4 Plastic limit: 19.4	0	35	1400	22.5	1716	26.9

Table 10.3 Summary of Soil Properties Used in Comparison of R and τ_{ff} vs. σ'_{fc} Strength Envelopes

^{*a*} Intercept of τ_{ff} vs. σ'_{fc} envelope—can be calculated knowing c', ϕ' , c_R , and ϕ_R . ^{*b*} Slope of τ_{ff} vs. σ'_{fc} envelope—can be calculated knowing c', ϕ' , c_R , and ϕ_R .

Figure 10.6 Slope used to compare simple, single-stage and rigorous, two-stage pseudostatic analyses.

Table 10.4Summary of Pseudostatic Safety FactorsComputed Using Simple Single-Stage and RigorousTwo-Stage Procedures

	Case dry sl	e I: lope	Case II: submerged slope		
Soil	Single-stage analysis	Two-stage analysis	Single-stage analysis	Two-stage analysis	
1	0.95	1.06	0.83	0.95	
2	1.56	1.77	1.59	1.79	
3	1.07	1.19	1.10	1.21	
4	2.76	3.42	2.83	3.49	

Figure 10.7 Comparison of factors of safety by simplified single-stage pseudostatic and more rigorous two-stage pseudostatic analyses.

used for cases where significant (more than 15 to 20%) strength losses are not anticipated.

POSTEARTHQUAKE STABILITY ANALYSES

Following an earthquake, the stability of a slope may be diminished because cyclic loading has reduced the shear strength of the soil. The reductions in shear strength are generally treated differently depending on whether or not liquefaction occurs. Stability follow-

DRAINED SHEAR STRENGTH PARAMETER CORRELATION

Project No: 011-11497-014 Gavin Plant Bottom Ash Pond Investigation Project:

Date: 5/29/09

Reference:

Drained Shear Strength Parameters for Analysis of Landslides. Timothy D. Stark; Hangseok Choi; and Sean McCone. Journal of Geotechnical Engineering, May 2005. pp 575 - 588

Purpose:

Estimate effective stress, or drained, shear strength parameters of cohesive soils through emperical correlations using laboratory index testing and the effective normal stress. Secant residual and secant fully softened friction angles can be estimated from charts developed by Stark et al.

Laboratory Data

Soil Layer: Newer Embankment Fill

Statistical Results from 4 Borings

Statistical Results from <u>4</u> Bo	orings			% Passing	Clay Sized
				#200 Sieve	Fraction
	PI	<u>LL</u>	MC	<u>(.075 mm)</u>	<u>(.002 mm)</u>
Number in Statistical Sample	12	12	16	9	8
Minimum	9	25	10	24	8
Maximum	18	37	31	79	21
Mean	12.1	30.3	16.3	41.6	12.1
Median	11	28.5	14.5	31	11
Mode	10	27	16	31	12
Std Dev	3.2	4.5	5.4	18.9	4.6
Design Value	10	27	-	-	12

Adjustment Factor for ASTM Derived Values

ball-milled derived LL	0.03 (ASTM dorived 11) + 1.23	$LL_{ASTM} =$	27
ASTM derived LL	:003 (ASTM derived LL) + 1:23	$LL_{BM} =$	35.4

ball-milled derived CF ASTM derived CF = 0.0003 (ASTM derived CF)2 - 0.037(ASTM derived CF) + 2.254

	CF _{ASTM} =	12
where: LL = Liquid Limit	CF _{BM} =	22.2
CF = Clay-sized Fraction		

Fig. 5. Secant fully softened friction angle relationships with liquid limit, clay-size fraction, and effective normal stress

Effective Normal Stress				
		50 kPa	100 kPa	
Sized tion,	CF ≤ 20	32.5°	31.5°	
Clay S Fract %	25 ≤ CF ≤ 45	32.5°	30°	
Design Frict	tion Angle Valu	е	31°	

Secant Fully Softened Friction Angle

DRAINED SHEAR STRENGTH PARAMETER CORRELATION

Project No: 011-11497-014 Project: Gavin Plant Bottom Ash Pond Investigation Date: 5/29/09

Reference:

Drained Shear Strength Parameters for Analysis of Landslides. Timothy D. Stark; Hangseok Choi; and Sean McCone. Journal of Geotechnical Engineering, May 2005. pp 575 - 588

Purpose:

Estimate effective stress, or drained, shear strength parameters of cohesive soils through emperical correlations using laboratory index testing and the effective normal stress. Secant residual and secant fully softened friction angles can be estimated from charts developed by Stark et al.

Laboratory Data

Soil Layer: Original Embankment Fill

Statistical Results from 3 Borings

Statistical Results from <u>3</u> Bo	orings			% Passing	Clay Sized
				#200 Sieve	Fraction
	PI	<u>LL</u>	MC	<u>(.075 mm)</u>	<u>(.002 mm)</u>
Number in Statistical Sample	6	6	10	5	4
Minimum	14	32	15	76	23
Maximum	24	49	33	96	32
Mean	19.8	43.3	22.5	86.2	28.0
Median	20.5	47.5	22	86	28.5
Mode	24	48	22	#N/A	#N/A
Std Dev	4.4	7.4	5.1	8.1	3.7
Design Value	24	48	-	-	28

Adjustment Factor for ASTM Derived Values

ball-milled derived LL	0.02 (A STM dorivod 11) + 1.22	LL _{ASTM} =	48
ASTM derived LL	= = .003 (A3 11/ derived LL) + 1.23	LL _{BM} =	66.0

ball-milled derived CF ASTM derived CF = 0.0003 (ASTM derived CF)2 - 0.037(ASTM derived CF) + 2.254

	CF _{ASTM} =	28
where: LL = Liquid Limit	CF _{BM} =	40.7
CF = Clay-sized Fraction		

Fig. 5. Secant fully softened friction angle relationships with liquid limit, clay-size fraction, and effective normal stress

Effective Normal Stress, kPa	50
Secant Fully Softened Friction Angle	30°

DRAINED SHEAR STRENGTH PARAMETER CORRELATION

% Passing Clay Sized

Project No: 011-11497-014 Project: Gavin Plant Bottom Ash Pond Investigation Date: 5/29/09

Reference:

Drained Shear Strength Parameters for Analysis of Landslides. Timothy D. Stark; Hangseok Choi; and Sean McCone. Journal of Geotechnical Engineering, May 2005. pp 575 - 588

Purpose:

Estimate effective stress, or drained, shear strength parameters of cohesive soils through emperical correlations using laboratory index testing and the effective normal stress. Secant residual and secant fully softened friction angles can be estimated from charts developed by Stark et al.

Laboratory Data

Soil Layer: Organic Clayey Silt

Statistical Results from <u>7</u> Borings

				#200 Sieve	Fraction
	<u>PI</u>	<u>LL</u>	MC	<u>(.075 mm)</u>	<u>(.002 mm)</u>
Number in Statistical Sample	17	17	20	21	19
Minimum	3	30	34	56	12
Maximum	20	50	54	97	44
Mean	13.5	40.6	42.5	78.2	19.8
Median	15	41	43	81	18
Mode	16	45	43	81	16
Std Dev	4.6	5.3	4.4	10.7	7.0
Design Value	16	45	-	-	20.0

Adjustment Factor for ASTM Derived Values

ball-milled derived LL	0.02 (ASTM dorivod 11) + 1.22	$LL_{ASTM} =$	45
ASTM derived LL	= = .003 (A3 IN derived LL) + 1.23	$LL_{BM} =$	61.4

ball-milled derived CF ASTM derived CF = 0.0003 (ASTM derived CF)2 - 0.037(ASTM derived CF) + 2.254

	CF _{ASTM} =	20.0
where: LL = Liquid Limit	CF _{BM} =	32.7
CF = Clay-sized Fraction		

Fig. 5. Secant fully softened friction angle relationships with liquid limit, clay-size fraction, and effective normal stress

Effective Normal Stress			
		100 kPa	400 kPa
Sized tion,	CF ≤ 20	27.5°	24°
Clay S Fract %	$25 \le CF \le 45$	-	-
Design Friction Angle Value 26°			

ant Fully Softanad Existion Angle

DRAINED SHEAR STRENGTH PARAMETER CORRELATION

Project No: 011-11497-014 Project: Gavin Plant Bottom Ash Pond Investigation Date: 5/29/09

Reference:

Drained Shear Strength Parameters for Analysis of Landslides. Timothy D. Stark; Hangseok Choi; and Sean McCone. Journal of Geotechnical Engineering, May 2005. pp 575 - 588

Purpose:

Estimate effective stress, or drained, shear strength parameters of cohesive soils through emperical correlations using laboratory index testing and the effective normal stress. Secant residual and secant fully softened friction angles can be estimated from charts developed by Stark et al.

Laboratory Data

Soil Layer: Alluvium Silt and Clay

Statistical Results from <u>6</u> Bo	rings			% Passing	Clay Sized
				#200 Sieve	Fraction
	<u>PI*</u>	<u>LL*</u>	MC	<u>(.075 mm)</u>	<u>(.002 mm)</u>
Number in Statistical Sample	4	4	10	12	10
Minimum	7	34	22	48	3
Maximum	15	38	38	96	28
Mean	12.5	36.0	29.0	76.8	11.0
Median	14	36	28.5	76.5	6.5
Mode	15	#N/A	26	91	5
Std Dev	3.8	1.8	5.4	15.9	8.5
*Does not include results from 'Non-Plastic'	samples.				
Design Value	15	36	-	-	10.0

Adjustment Factor for ASTM Derived Values

ball-milled derived LL	= 0.02 (ASTM dorived (1) + 1.22)	$LL_{ASTM} =$	36
ASTM derived LL	:003 (ASTM derived LL) + 1:25	LL _{BM} =	48.2

ball-milled derived CF ASTM derived CF = 0.0003 (ASTM derived CF)2 - 0.037(ASTM derived CF) + 2.254

where: LL = Liquid Limit CF = Clay-sized Fraction CF_{BM} = 19.1

PLATE 23

10.0

CF_{ASTM} =

Secant Fully Softened Friction Angle

Figure 74. Relationship between ϕ' and PI (Terzaghi, Peck, and Mesri, 1996).

Report No. FHWA-IF-02-034 Geotechnical Engineering Circular No. 5 Evaluation of Soil and Rock Properties April, 2002

LANER	<u> </u>	4'
ENPASIMENT EXTANSION FILL	10	33°
ORIGINAL EMBANKMENT FILL	24	30°
ALLUNUM SILTAND CLAY	15	31.5
ORGANIC CLAYEN SILT	16	31°

TABLE 3.28 $3/2^3 = \frac{3^2}{62.4^2}$ COMMON PROPERTIES OF COHESIONLESS SOILS								
Material	Compactness	D _R , %	N*	γ dry,† g/cm³	بالان (موج)	Void ratio c	VSAT (PCF)	Strength‡ ¢
GW:well-graded	Dense	75	90	2.21	138	0.22	149	40
gravels, gravel-	Medium dense	50	55	2.08	129,8	0.28	143.5	36
sand mixtures	Loose	25	<28	1.97	123	0.36	139.5	32
GP: poorly graded	Dense	75	70	2.04	127.4	0.33	143	38
gravels, gravel-	Medium dense	50	50	[1.92]	120	0.39	137.5	35
sand mixtures	Loose	25	<20	1.83	114.2	0.47	134	32
SW: well-graded sands, gravelly sands	Dense Medium dense Loose	75 50 25	65 35 <15	1.89 (1.79) 1.70	118 111.7 106.1	0.43 0.49 0.57	136-8 132.2 128.8	37 34 30
SP: poorly graded	Dense	75	50	1.76	104.9	0.52	131 3	36
sands, gravelly	Medium dense	50	30	1.67	104.2	0.60	127.6	33
sands	Loose	25	<10	1.59	94.3	0.65	124	29
SM: silty sands	Dense	75	45	1.65	103	0.62	127	35
	Medium dense	<u>50</u>	25	1.55	97	0.74	123.5	32
	Loose	25	<8	1.49	93	0.80	120.7	29
ML: inorganic silts, very fine sands	Dense Medium dense Lo <mark>ose</mark>	75 50 25	35 20 <4	.1.49 1.41 1.35	93 88 81.3	0.80 0.90 1.0	120.7 117.6 115.5	33 31 27

*N is blows per foot of penetration in the SPT. Adjustments for gradation are after Burmister (1962).¹³ See Table 3.23 for general relationships of D_R vs. N.

†Density given is for $G_s = 2.65$ (quartz grains).

PLATE 26

4Friction angle ϕ depends on mineral type, normal stress, and grain angularity as well as D_R and gradation (see Fig. 3.63).

 $V_{sat} = \frac{(4s+e)V_{w}}{1+e}$ 1 3/1m3 = 9.81 KN/m3 | +e YSAT - Yd + eYw (1-FE)

198 INVESTIGATION METHODS AND PROCEDURES

Newer Embankment Fill: Permeability

D15 Range = 0,002 - 0,080

Figure 91. Range of hydraulic conductivity based on grain size (after GeoSyntec, 1991).

Considering the site geology, the laboratory and field data should be tabulated with other known data for the sample/test location and with depth, soil/rock type, grain size distribution, Atterberg limits, and water content. This table should also include important test information such as: stress conditions, gradients, and test method. Once this table is constructed it will be much easier to group like soil types and k values, to delineate distinct areas within the site, and to eliminate potentially erroneous data. Once these values have been grouped together and potentially erroneous values eliminated, it may be useful to compute an average value for each grouping. When averaging, the log of the hydraulic conductivity value must be taken before performing an arithmetic mean or incorrect results will be produced. First, the logarithm of each value should be taken. Second, an average value should be calculated from these logarithmic values. Finally, the antilog of this average value should be taken to calculate the average hydraulic conductivity value. Table 35 illustrates how to calculate the mean of the log of k data and compares this value with an incorrect direct arithmetic mean.

Geotechnical Engineering Circular No. 5 Evaluation of Soil and Rock Properties. Glacial outwash sand and gravel.

Figure 91. Range of hydraulic conductivity based on grain size (after GeoSyntec, 1991).

Considering the site geology, the laboratory and field data should be tabulated with other known data for the sample/test location and with depth, soil/rock type, grain size distribution, Atterberg limits, and water content. This table should also include important test information such as: stress conditions, gradients, and test method. Once this table is constructed it will be much easier to group like soil types and k values, to delineate distinct areas within the site, and to eliminate potentially erroneous data. Once these values have been grouped together and potentially erroneous values eliminated, it may be useful to compute an average value for each grouping. When averaging, the log of the hydraulic conductivity value must be taken before performing an arithmetic mean or incorrect results will be produced. First, the logarithm of each value should be taken. Second, an average value should be taken to calculate the average hydraulic conductivity value. Table 35 illustrates how to calculate the mean of the log of k data and compares this value with an incorrect direct arithmetic mean.

Geotechnical Engineering Circular No. 5 Evaluation of Soil and Rock Properties.

PERMEABILITY TEST DATA AND COMPUTATION SHEET BBCK

Job Number:	011.11497.	.013		Date:	5/6-7/200	9	Max	imum Dry Density:	
Project Name:	Cardinal A	sh Pond Inv	estigation	Boring:	CD-PZ-B	AP-0907	 Optimum	Moisture Content:	
Project Location:	Brilliant, O	hio		Sample:	ST-6A S	Sec. II	_	% Compaction.:	
Tested By:	PJM			Depth:	8.5' to 9.	9'	_	Optimum +/-:	
Remarks:				-			_	Natural:	Х
Material:	FILL : Hard	brown, gray	and dark-g	ray silty clay	inter-mix	ed with orga	- nic silt, trace	Remolded:	
	fine to coars	se sand.		<u> </u>					
							F		
mple:			Tes	at Conditions:		<u> </u>	Moisture Content:	Before Test	After Test
Initial Length:	5.5945 in	= 14.210 cm	Ch	amber Pressure:	62 psi		Pan No. =	D	D
nal Ave. Length (L):	5.6042 in	= 14.235 cm		Back Pressure:	58 psi		Wet Wt. + Pan =	1144.17	1157.03
Diameter:	2.8765 in	= 7.31 cm	Co	nfining Pressure:	4 psi		Dry Wt. + Pan =	896.92	896.92
Area (A):	6.499 sq in	= 41.93 sq cm		Temp. @ Start:	22.5 °C		Wt. of Pan =	0.00	0.00
Volume (V):	36.356 cu in	= 595.77 cu cm		Temp. @ End:	22.5 °C		Wt. of Dry Soil =	896.92	896.92
Wet Wt.:	1144.17 grams			Average Temp.:	22.5 °C	—	Wt. of Water =	247.25	260.11
Unit Wet Wt.:	119.90 pcf			B Parameter:	0.96		% Moisture =	27.57	29.00
Lipit Dry Wt :	03.00 pcf				0.00			21.07	20100
Onit Dry Wt	90.99 pci		Di	otto Progurag Di	uring Toot:			02.90	09 20
			<u>F4</u>			1000 0	<u>% SATURATION</u>	93.80	90.30
				I op Pipette:	60 psi	= 4220.3 cm	_S.G.(est) =	2.7000	
<u>ette:</u>				Bottom Pipette:	58 psi	= 4079.6 cm	_		
$=\frac{\mathbf{a}\cdot\mathbf{L}}{2\cdot\mathbf{A}\cdot\Delta\mathbf{t}}\ln\left(\frac{1}{2}\right)$	$\frac{h_1}{h_2}$	where: k a L A	= Hydraulic Cor = Pipette Cross = Length of Sar = Sample Cross	nductivity -Sectional Area nple s-Sectional Area	L	∆t = Time Interval h ₁ = Head Loss Ar h ₂ = Head Loss Ar n = Natural Logar	(t ₂ - t ₁) cross Permeamete cross Permeamete rithm (Base e = 2.7	r/Specimen at t ₁ r/Specimen at t ₂ 1828)	
$\frac{a \cdot L}{2 \cdot A \cdot \Delta t} \ln \left(\frac{1}{2}\right)$	$\frac{h_1}{h_2}$	where: k a L A	= Hydraulic Cor = Pipette Cross = Length of Sar = Sample Cross	nductivity -Sectional Area nple s-Sectional Area	L	Δt = Time Interval h ₁ = Head Loss Ar h ₂ = Head Loss Ar n = Natural Logar	(t ₂ - t ₁) cross Permeamete cross Permeamete rithm (Base e = 2.7	r/Specimen at t ₁ r/Specimen at t ₂ 1828)	
$= \frac{\mathbf{a} \cdot \mathbf{L}}{2 \cdot \mathbf{A} \cdot \Delta t} \ln \left(\frac{1}{2}\right)$	$\frac{h_1}{h_2}$	where: k a L A	= Hydraulic Cor = Pipette Cross = Length of Sar = Sample Cross	nductivity -Sectional Area nple s-Sectional Area Hydraulic Head	L	 At = Time Interval h₁ = Head Loss Ar h₂ = Head Loss Ar n = Natural Logar Hydraulic Head 	(t ₂ - t ₁) cross Permeamete cross Permeamete ithm (Base e = 2.7	r/Specimen at t ₁ r/Specimen at t ₂ 1828)	Temp. Corr
$\frac{a \cdot L}{2 \cdot A \cdot \Delta t} \ln \left(\frac{1}{2}\right)$	$\frac{h_1}{h_2}$	where: k a L A	= Hydraulic Cor = Pipette Cross = Length of Sar = Sample Cross	nductivity -Sectional Area nple 5-Sectional Area Hydraulic Head Headwater	L Bottom	At = Time Interval h ₁ = Head Loss Ar h ₂ = Head Loss Ar n = Natural Logar Hydraulic Hear Tailwater	(t ₂ - t ₁) cross Permeamete cross Permeamete ithm (Base e = 2.7 Head Loss	r/Specimen at t ₁ r/Specimen at t ₂ 1828)	Temp. Corr Permeabilit
$\frac{a \cdot L}{2 \cdot A \cdot \Delta t} \ln \left(\frac{1}{2}\right)$	h ₁ h ₂) Time	where: k a L A Time Interval Δt	= Hydraulic Cor = Pipette Cross = Length of Sar = Sample Cross Top Pipette	nductivity -Sectional Area nple s-Sectional Area Hydraulic Head Headwater H ₁	L Bottom Pipette	At = Time Interval h ₁ = Head Loss Ar h ₂ = Head Loss Ar n = Natural Logar Hydraulic Head Tailwater H ₂	(t ₂ - t ₁) cross Permeamete cross Permeamete ithm (Base e = 2.7 Head Loss h = H ₁ -H ₂	r/Specimen at t ₁ r/Specimen at t ₂ 1828)	Temp. Corr Permeabilit k
$\frac{a \cdot L}{2 \cdot A \cdot \Delta t} \ln \left(\frac{1}{2}\right)$	Time Readings	where: k a L A Δt Seconds	= Hydraulic Cor = Pipette Cross = Length of Sar = Sample Cross Top Pipette cc	nductivity -Sectional Area nple s-Sectional Area Hydraulic Head Headwater H ₁ cm	Bottom Pipette cc	At = Time Interval h ₁ = Head Loss Ar h ₂ = Head Loss Ar n = Natural Logar Hydraulic Head Tailwater H ₂ cm	$(t_2 - t_1)$ cross Permeamete cross Permeamete ithm (Base e = 2.7 Head Loss h = H ₁ -H ₂ cm	r/Specimen at t ₁ r/Specimen at t ₂ 1828) 1828) ڈn (h ₁ /h ₂₎	Temp. Corr Permeabilit k cm/sec
$\frac{a \cdot L}{2 \cdot A \cdot \Delta t} \ln \left(\frac{1}{2}\right)$ Date 5/6/2009	Time Readings 9:45 AM	where: k a L A Time Interval Δt Seconds 0.00	= Hydraulic Cor = Pipette Cross = Length of Sar = Sample Cross Top Pipette cc 48.45	Hydraulic Head Hydraulic Head Headwater H ₁ cm 4092.08	Bottom Pipette cc 14.20	At = Time Interval h1 = Head Loss Ar h2 = Head Loss Ar n = Natural Logar Hydraulic Head Tailwater H2 cm 4272.01	$(t_2 - t_1)$ cross Permeamete cross Permeamete ithm (Base e = 2.7 Head Loss $h = H_1 - H_2$ cm -179.93	r/Specimen at t ₁ r/Specimen at t ₂ 1828) łn (h ₁ /h ₂₎ –	Temp. Corr Permeabilit k cm/sec -
$\frac{a \cdot L}{2 \cdot A \cdot \Delta t} \ln \left(\frac{1}{2 \cdot A \cdot \Delta t}\right)$ Date 5/6/2009 5/6/2009	Time Readings 9:45 AM 10:51 AM	where: k a L A Time Interval Δt Seconds 0.00 3,960	= Hydraulic Cor = Pipette Cross = Length of Sar = Sample Cross Top Pipette cc 48.45 48.40	Hydraulic Head Headwater H1 cm 4092.08 4092.14	Bottom Pipette cc 14.20 14.45	At = Time Interval h ₁ = Head Loss Ar h ₂ = Head Loss Ar n = Natural Logar Hydraulic Hear Tailwater H ₂ cm 4272.01 4271.73	$(t_2 - t_1)$ cross Permeamete cross Permeamete ithm (Base e = 2.7 Head Loss h = H_1-H_2 cm -179.93 -179.59	r/Specimen at t ₁ r/Specimen at t ₂ 1828) 	Temp. Corr Permeabilit k cm/sec – 6.740E-08
$\frac{a \cdot L}{2 \cdot A \cdot \Delta t} \ln \left(\frac{1}{2}\right)$ Date 5/6/2009 5/6/2009	h1 h2 Time Readings 9:45 AM 10:51 AM 12:15 PM	where: k a L A Time Interval Δt Seconds 0.00 3,960 5,040	= Hydraulic Cor = Pipette Cross = Length of Sar = Sample Cross Top Pipette cc 48.45 48.40 48.20	Hydraulic Head Headwater H1 cm 4092.08 4092.14 4092.36	Bottom Pipette cc 14.20 14.45 14.65	At = Time Interval h1 = Head Loss Ar h2 = Head Loss Ar n = Natural Logar Hydraulic Hear Tailwater H2 cm 4272.01 4271.73 4271.50	$(t_2 - t_1)$ cross Permeamete cross Permeamete ithm (Base e = 2.7 Head Loss h = H ₁ -H ₂ cm -179.93 -179.59 -179.13	r/Specimen at t ₁ r/Specimen at t ₂ 1828) In (h ₁ /h ₂₎ - 0.00191 0.00256	Temp. Corr Permeabilit k cm/sec _ 6.740E-08 7.077E-08
$\frac{a \cdot L}{2 \cdot A \cdot \Delta t} \ln \left(\frac{1}{2}\right)$ Date $\frac{5/6/2009}{5/6/2009}$	h1 h2 Time Readings 9:45 AM 10:51 AM 12:15 PM 1:45 PM	where: k a L A Time Interval Δt Seconds 0.00 3,960 5,040	= Hydraulic Cor = Pipette Cross = Length of Sar = Sample Cross Top Pipette cc 48.45 48.40 48.20 48.05	hductivity -Sectional Area nple s-Sectional Area Hydraulic Head Headwater H ₁ cm 4092.08 4092.14 4092.36 4092.54	Bottom Pipette cc 14.20 14.45 14.65 15.00	At = Time Interval h1 = Head Loss Ar h2 = Head Loss Ar n = Natural Logar Hydraulic Head Tailwater H2 cm 4272.01 4271.73 4271.50 4271.09	$(t_2 - t_1)$ cross Permeamete cross Permeamete ithm (Base e = 2.7 Head Loss h = H_1-H_2 cm -179.93 -179.59 -179.13 -178.56	r/Specimen at t ₁ r/Specimen at t ₂ 1828) <i>t</i> n (h ₁ /h ₂₎ - 0.00191 0.00256 0.00320	Temp. Corr Permeabilit k cm/sec - 6.740E-08 7.077E-08 8.280E-08
$\frac{a \cdot L}{2 \cdot A \cdot \Delta t} \ln \left(\frac{1}{2 \cdot A \cdot \Delta t}\right)$ Date 5/6/2009 5/6/200 5/6/200 5/6/2009 5/6/200 5/6/200 5/6/2009 5/6	h1 h2 Time Readings 9:45 AM 10:51 AM 12:15 PM 1:45 PM 3:17 PM	where: k a L A Time Interval Δt Seconds 0.00 3,960 5,040 5,520	= Hydraulic Cor = Pipette Cross = Length of Sar = Sample Cross Top Pipette cc 48.45 48.40 48.20 48.05 47.85	nductivity -Sectional Area nple -Sectional Area Hydraulic Head Headwater H ₁ cm 4092.08 4092.14 4092.36 4092.54 4092.77	Bottom Pipette cc 14.20 14.45 14.65 15.00 15.25	At = Time Interval h1 = Head Loss Ar h2 = Head Loss Ar n = Natural Logar Hydraulic Head Tailwater H2 cm 4272.01 4271.73 4271.09 4270.81	$(t_2 - t_1)$ cross Permeamete cross Permeamete ithm (Base e = 2.7 Head Loss h = H_1-H_2 cm -179.93 -179.59 -179.13 -178.56 -178.04	r/Specimen at t ₁ r/Specimen at t ₂ 1828) 	Temp. Corr Permeabilit k cm/sec - 6.740E-08 7.077E-08 8.280E-08 7.312E-08
$\frac{a \cdot L}{2 \cdot A \cdot \Delta t} \ln \left(\frac{1}{2 \cdot A \cdot \Delta t} \right)$ Date 5/6/2009 5/6/2009 5/6/2009 5/6/2009 5/6/2009 5/6/2009 5/6/2009 5/6/2009 5/6/2009 5/6/2009	h1 h2 Time Readings 9:45 AM 10:51 AM 12:15 PM 1:45 PM 3:17 PM 8:21 AM	where: k a L A Time Interval Δt Seconds 0.00 3,960 5,040 5,520 61,440	= Hydraulic Cor = Pipette Cross = Length of Sar = Sample Cross Top Pipette cc 48.45 48.40 48.20 48.05 47.85 45.60	Hydraulic Head Hydraulic Head Headwater H ₁ cm 4092.08 4092.14 4092.36 4092.54 4092.77 4095.34	Bottom Pipette cc 14.20 14.45 14.65 15.00 15.25 18.00	At = Time Interval h1 = Head Loss Ar h2 = Head Loss Ar h2 = Head Loss Ar n = Natural Logar Hydraulic Head Tailwater H2 cm 4272.01 4271.73 4271.09 4270.81 4267.66	(t ₂ - t ₁) cross Permeamete cross Permeamete ithm (Base e = 2.7 Head Loss h = H ₁ -H ₂ cm -179.93 -179.59 -179.13 -178.56 -178.04 -172.31	r/Specimen at t ₁ r/Specimen at t ₂ 1828) <i>l</i> n (h ₁ /h ₂₎ - 0.00191 0.00256 0.00320 0.00289 0.03272	Temp. Corr Permeabilit k cm/sec - 6.740E-08 7.077E-08 8.280E-08 7.312E-08 7.431E-08
$\frac{a \cdot L}{2 \cdot A \cdot \Delta t} \ln \left(\frac{1}{2}\right)$ $\frac{Date}{5/6/2009}$ $\frac{5/6/2009}{5/6/2009}$ $\frac{5/6/2009}{5/6/2009}$ $\frac{5}{5}/6/2009}$	h1 h2 Time Readings 9:45 AM 10:51 AM 12:15 PM 1:45 PM 3:17 PM 8:21 AM	where: k a L A Time Interval Δt Seconds 0.00 3,960 5,040 5,400 5,520 61,440	= Hydraulic Cor = Pipette Cross = Length of Sar = Sample Cross Top Pipette cc 48.45 48.40 48.20 48.05 47.85 45.60	nductivity -Sectional Area nple -Sectional Area Hydraulic Head Headwater H ₁ cm 4092.08 4092.14 4092.36 4092.54 4092.77 4095.34	Bottom Pipette cc 14.20 14.45 14.65 15.00 15.25 18.00	At = Time Interval h1 = Head Loss Ar h2 = Head Loss Ar n = Natural Logar Hydraulic Hear H2 Tailwater H2 4272.01 4271.73 4271.50 4271.09 4270.81 4267.66	$(t_2 - t_1)$ cross Permeamete cross Permeamete ithm (Base e = 2.7 Head Loss h = H_1-H_2 cm -179.93 -179.59 -179.13 -178.56 -178.04 -172.31	r/Specimen at t ₁ r/Specimen at t ₂ 1828) <i>l</i> n (h ₁ /h ₂₎ - 0.00191 0.00256 0.00320 0.00289 0.03272	Temp. Corr Permeabilit k cm/sec - 6.740E-08 7.077E-08 8.280E-08 7.312E-08 7.431E-08
$\frac{\text{cutations:}}{2 \cdot A \cdot \Delta t} \ln \left(\frac{1}{2}\right)$ $\frac{\text{Date}}{5/6/2009}$ $\frac{5/6/2009}{5/6/2009}$ $\frac{5/6/2009}{5/6/2009}$ $\frac{5/6/2009}{5/6/2009}$ $\frac{5}{5}/6/2009}$	h1 h2 Time Readings 9:45 AM 10:51 AM 12:15 PM 1:45 PM 3:17 PM 8:21 AM	where: k a L A Time Interval Δt Seconds 0.00 3,960 5,040 5,520 61,440	= Hydraulic Cor = Pipette Cross = Length of Sar = Sample Cross Top Pipette cc 48.45 48.40 48.20 48.05 47.85 45.60	nductivity -Sectional Area nple s-Sectional Area Hydraulic Head Headwater H ₁ cm 4092.08 4092.14 4092.36 4092.54 4092.77 4095.34	Bottom Pipette cc 14.20 14.45 14.65 15.00 15.25 18.00	At = Time Interval h1 = Head Loss Ar h2 = Head Loss Ar n = Natural Logar Hydraulic Head Tailwater H2 cm 4272.01 4271.73 4271.09 4270.81 4267.66	$(t_2 - t_1)$ cross Permeamete cross Permeamete ithm (Base e = 2.7 Head Loss h = H_1-H_2 cm -179.93 -179.59 -179.13 -178.56 -178.04 -172.31	r/Specimen at t ₁ r/Specimen at t ₂ 1828) <i>l</i> n (h ₁ /h ₂₎ - 0.00191 0.00256 0.00320 0.00289 0.03272	Temp. Corr Permeability k cm/sec - 6.740E-08 7.077E-08 8.280E-08 7.312E-08 7.431E-08
$\frac{\text{cutations:}}{2 \cdot A \cdot \Delta t} \ln \left(\frac{1}{2}\right)$ $= \frac{a \cdot L}{2 \cdot A \cdot \Delta t} \ln \left(\frac{1}{2}\right)$ $\frac{1}{2 \cdot A \cdot \Delta t} \ln $	h1 h2 Time Readings 9:45 AM 10:51 AM 12:15 PM 1:45 PM 3:17 PM 8:21 AM	where: k a L A Time Interval Δt Seconds 0.00 3,960 5,040 5,520 61,440	= Hydraulic Cor = Pipette Cross = Length of Sar = Sample Cross Top Pipette cc 48.45 48.40 48.20 48.05 47.85 45.60	nductivity -Sectional Area nple s-Sectional Area Hydraulic Head Headwater H ₁ cm 4092.08 4092.14 4092.36 4092.54 4092.77 4095.34	Bottom Pipette cc 14.20 14.45 14.65 15.00 15.25 18.00	At = Time Interval h1 = Head Loss Ar h2 = Head Loss Ar n = Natural Logar Hydraulic Head Tailwater H2 cm 4272.01 4271.73 4271.70 4271.09 4267.66	$(t_2 - t_1)$ cross Permeamete cross Permeamete ithm (Base e = 2.7 Head Loss h = H ₁ -H ₂ cm -179.93 -179.59 -179.13 -178.56 -178.04 -172.31	r/Specimen at t ₁ r/Specimen at t ₂ 1828) 	Temp. Corr Permeabilit k cm/sec - 6.740E-08 7.077E-08 8.280E-08 7.312E-08 7.431E-08
$\frac{\text{culations:}}{2 \cdot \text{A} \cdot \Delta t} \ln \left(\frac{1}{2 $	h1 h2 Time Readings 9:45 AM 10:51 AM 12:15 PM 1:45 PM 3:17 PM 8:21 AM	where: k a L A Time Interval Δt Seconds 0.00 3,960 5,040 5,520 61,440 1 1 1 1 1 1 1 1 1 1 1 1 1	= Hydraulic Cor = Pipette Cross = Length of Sar = Sample Cross Top Pipette cc 48.45 48.40 48.20 48.05 47.85 45.60	nductivity -Sectional Area nple -Sectional Area Hydraulic Head Headwater H1 cm 4092.08 4092.14 4092.36 4092.36 4092.54 4092.77 4095.34	2 Bottom Pipette cc 14.20 14.45 14.65 15.00 15.25 18.00	At = Time Interval h1 = Head Loss Ar h2 = Head Loss Ar n = Natural Logar Hydraulic Head Tailwater H2 cm 4272.01 4271.73 4271.60 4270.81 4267.66	$(t_2 - t_1)$ cross Permeamete cross Permeamete ithm (Base e = 2.7 Head Loss h = H ₁ -H ₂ cm -179.93 -179.13 -179.59 -179.13 -178.56 -178.04 -172.31	r/Specimen at t ₁ r/Specimen at t ₂ 1828) 	Temp. Corr Permeabilit k cm/sec - 6.740E-08 7.077E-08 8.280E-08 7.312E-08 7.431E-08
$\frac{\text{culations:}}{2 \cdot \text{A} \cdot \Delta t} \ln \left(\frac{1}{2} + \frac{1}{2 \cdot \text{A} \cdot \Delta t} \ln \left(\frac{1}{2 \cdot \text{A} \cdot \Delta t} + \frac{1}{2 \cdot \text{A} \cdot \Delta t} \ln \left(\frac{1}{2 \cdot \text{A} \cdot \Delta t} + \frac{1}{2 \cdot \text{A} \cdot$	h1 h2 Time Readings 9:45 AM 10:51 AM 12:15 PM 1:45 PM 3:17 PM 8:21 AM	where: k a L A Time Interval Δt Seconds 0.00 3,960 5,040 5,400 5,520 61,440 1 1 1 1 1 1 1 1 1 1 1 1 1	= Hydraulic Cor = Pipette Cross = Length of Sar = Sample Cross Top Pipette cc 48.45 48.40 48.20 48.05 47.85 45.60	nductivity -Sectional Area mple -Sectional Area Hydraulic Head Headwater H ₁ cm 4092.08 4092.14 4092.36 4092.54 4092.54 4092.77 4095.34	2 Bottom Pipette cc 14.20 14.45 15.00 15.25 18.00	At = Time Interval h1 = Head Loss Ar h2 = Head Loss Ar h2 = Head Loss Ar n = Natural Logar Hydraulic Head Tailwater H2 cm 4272.01 4271.73 4271.09 4270.81 4267.66	(t ₂ - t ₁) cross Permeamete ithm (Base e = 2.7 Head Loss h = H ₁ -H ₂ cm -179.93 -179.13 -178.56 -178.04 -172.31	r/Specimen at t ₁ r/Specimen at t ₂ 1828) 	Temp. Corr Permeabilit k cm/sec - 6.740E-08 7.077E-08 8.280E-08 7.312E-08 7.431E-08
$\frac{\text{culations:}}{2 \cdot \text{A} \cdot \Delta t} \ln \left(\frac{1}{2} + \frac{1}{2 \cdot \text{A} \cdot \Delta t} \ln \left(\frac{1}{2} + \frac{1}{2 \cdot \text{A} \cdot \Delta t} \ln \left(\frac{1}{2} + \frac{1}{2 \cdot \text{A} \cdot \Delta t} + \frac{1}{2 \cdot \text{A} \cdot \Delta $	h1 h2 Time Readings 9:45 AM 10:51 AM 12:15 PM 1:45 PM 3:17 PM 8:21 AM	where: k a L A Time Interval Δt Seconds 0.00 3,960 5,040 5,520 61,440 1 1 1 1 1 1 1 1 1 1 1 1 1	= Hydraulic Cor = Pipette Cross = Length of Sar = Sample Cross Top Pipette cc 48.45 48.40 48.20 48.05 47.85 45.60	nductivity -Sectional Area nple S-Sectional Area Hydraulic Head Headwater H ₁ cm 4092.08 4092.14 4092.36 4092.77 4092.77 4095.34	2 Bottom Pipette cc 14.20 14.45 14.65 15.00 15.25 18.00	At = Time Interval h1 = Head Loss Ar h2 = Head Loss Ar n = Natural Logar Hydraulic Head Tailwater H2 cm 4272.01 4271.73 4271.09 4270.81 4267.66	(t ₂ - t ₁) cross Permeamete ithm (Base e = 2.7 Head Loss h = H ₁ -H ₂ cm -179.93 -179.13 -178.56 -178.04 -172.31	r/Specimen at t ₁ r/Specimen at t ₂ 1828) <i>l</i> n (h ₁ /h ₂₎ - 0.00191 0.00256 0.00320 0.00289 0.03272	Temp. Corr Permeabilit k cm/sec - 6.740E-08 7.077E-08 8.280E-08 7.312E-08 7.431E-08
$\frac{\text{culations:}}{2 \cdot \text{A} \cdot \Delta t} \ln \left(\frac{1}{2} + \frac{1}{2 \cdot \text{A} \cdot \Delta t} \ln \left(\frac{1}{2} + \frac{1}{2 \cdot \text{A} \cdot \Delta t} \ln \left(\frac{1}{2} + \frac{1}{2 \cdot \text{A} \cdot \Delta t} + \frac{1}{2 \cdot \text{A} \cdot \Delta $	h1 h2 Time Readings 9:45 AM 10:51 AM 12:15 PM 1:45 PM 3:17 PM 8:21 AM	where: k a L A Time Interval Δt Seconds 0.00 3,960 5,520 61,440 1 1 1 1 1 1 1 1 1 1 1 1 1	= Hydraulic Cor = Pipette Cross = Length of Sar = Sample Cross Top Pipette cc 48.45 48.40 48.20 48.05 47.85 45.60	nductivity -Sectional Area nple S-Sectional Area Hydraulic Head Headwater H1 cm 4092.08 4092.14 4092.36 4092.54 4092.54 4092.77 4095.34 	Bottom Pipette cc 14.20 14.45 14.65 15.00 15.25 18.00	At = Time Interval h1 = Head Loss Ar h2 = Head Loss Ar n = Natural Logar Hydraulic Head Tailwater H2 cm 4272.01 4271.73 4271.73 4271.09 4270.81 4267.66 Image: Image and the state of t	(t ₂ - t ₁) cross Permeamete cross Permeamete ithm (Base e = 2.7 Head Loss h = H ₁ -H ₂ cm -179.93 -179.59 -179.13 -178.56 -178.04 -172.31 -172.31	r/Specimen at t ₁ r/Specimen at t ₂ 1828) <i>l</i> n (h ₁ /h ₂₎ - 0.00191 0.00256 0.00320 0.00289 0.03272	Temp. Corr Permeabilit k cm/sec - 6.740E-08 7.077E-08 8.280E-08 7.312E-08 7.431E-08
$\frac{\text{culations:}}{2 \cdot A \cdot \Delta t} \ln \left(\frac{1}{2} + \frac{1}{2 \cdot A \cdot \Delta t} \ln \left(\frac{1}{2} + \frac{1}{2 \cdot A \cdot \Delta t} \ln \left(\frac{1}{2} + \frac{1}{2 \cdot A \cdot \Delta t} + \frac{1}{2 \cdot A \cdot \Delta t$	h1 h2 Time Readings 9:45 AM 10:51 AM 12:15 PM 1:45 PM 3:17 PM 8:21 AM	where: k a L A Time Interval Δt Seconds 0.00 3,960 5,040 5,520 61,440 1 1 1 1 1 1 1 1 1 1 1 1 1	= Hydraulic Cor = Pipette Cross = Length of Sar = Sample Cross Top Pipette cc 48.45 48.40 48.20 48.05 47.85 45.60	nductivity -Sectional Area nple -Sectional Area Hydraulic Head Headwater H ₁ cm 4092.08 4092.14 4092.36 4092.54 4092.77 4095.34 	Bottom Pipette cc 14.20 14.45 14.65 15.00 15.25 18.00	At = Time Interval h1 = Head Loss Ar h2 = Head Loss Ar n = Natural Logar Hydraulic Head Tailwater H2 cm 4272.01 4271.73 4271.70 4271.60 4270.81 4267.66	(t ₂ - t ₁) cross Permeamete cross Permeamete ithm (Base e = 2.7 Head Loss h = H ₁ -H ₂ cm -179.93 -179.59 -179.13 -178.56 -178.04 -172.31 	r/Specimen at t ₁ r/Specimen at t ₂ 1828) 	Temp. Corr Permeabilit k cm/sec - 6.740E-08 7.077E-08 8.280E-08 7.312E-08 7.431E-08
$\frac{\text{culations:}}{2 \cdot \text{A} \cdot \Delta t} \ln \left(\frac{1}{2} + \frac{1}{2 \cdot \text{A} \cdot \Delta t} \ln \left(\frac{1}{2 \cdot \text{A} \cdot \Delta t} \ln \left(\frac{1}{2 \cdot \text{A} \cdot \Delta t} + \frac{1}{2 \cdot \text{A} \cdot$	h1 h2 Time Readings 9:45 AM 10:51 AM 12:15 PM 1:45 PM 3:17 PM 8:21 AM	where: k a L A Time Interval Δt Seconds 0.00 3,960 5,040 5,520 61,440 1 1 1 1 1 1 1 1 1 1 1 1 1	= Hydraulic Cor = Pipette Cross = Length of Sar = Sample Cross Top Pipette cc 48.45 48.40 48.20 48.05 47.85 45.60	nductivity -Sectional Area nple -Sectional Area Hydraulic Head Headwater H1 cm 4092.08 4092.14 4092.36 4092.36 4092.54 4092.77 4095.34	2 Bottom Pipette cc 14.20 14.45 14.65 15.00 15.25 18.00	At = Time Interval h1 = Head Loss Ar h2 = Head Loss Ar h2 = Head Loss Ar n = Natural Logar Hydraulic Head Tailwater H2 cm 4272.01 4271.73 4271.09 4270.81 4267.66	(t ₂ - t ₁) cross Permeamete cross Permeamete ithm (Base e = 2.7 Head Loss h = H ₁ -H ₂ cm -179.93 -179.13 -179.59 -179.13 -178.56 -178.04 -172.31	r/Specimen at t ₁ r/Specimen at t ₂ 1828) 	Temp. Corr Permeabilit k cm/sec - 6.740E-08 7.077E-08 8.280E-08 7.312E-08 7.431E-08

USGS National Seismic Hazard Maps - 2008

Peak Horizontal Acceleration with 2% Probability of Exceedence in 50 Years

Appendix IV – Limit Equilibrium Analysis

Fine Grained Soil Liquefaction Screening Cardinal Bottom Ash Pond

Layer: NEWER EMBANKMENT FILL

BORING	SAMPLE	SAMPLE	NATURAL	LIQUID	PLASTIC	PLASTIC	GRAVEL	SAND	SILT	CLAY	CLAY	SILT/CLAY	USCS	F	ines Content	and Plasticity I	ndex Screening	
NUMBER	NUMBER	DEPTH	MOISTURE	LIMIT	LIMIT	INDEX				.005 mm	.002 mm		CLASSIFICATION			% Passing		Is Soil Sample Liquefiable
			CONTENT	%	%	%	%	%	%	%	%	%			LL < 35	0.005 < 15	WC < 0.9LL	(meets all three criteria)
BAP-0901	S-5	7.75	16	28	18	10									Yes	-	Yes	-
BAP-0901	S-9	13.75	13	27	17	10									Yes	-	Yes	-
BAP-0901	S-12	18.25	14	37	24	13	7	32	49	23	12	61	SANDY LEAN CLAY CL		No	No	Yes	No
BAP-0902	S-11	16.75	24	37	19	18									No	-	Yes	No
BAP-0902	S-12	18.25	21	35	17	18	8	37	33	28	21	54	SANDY LEAN CLAY CL		No	No	Yes	No
BAP-0902	S-13	19.75	31	29	17	12	1	20	62	28	17	79	LEAN CLAY with SAND CL		Yes	No	No	No
BAP-0904	S-9	13.75	16	35	21	14									No	-	Yes	No
BAP-0906	S-3	4.75	15	27	17	10									Yes	-	Yes	-
BAP-0906	S-8	12.75					30	40	22	13	9	31			-	Yes	-	-
BAP-0906	S-11	17.25	14	31	19	12	18	44	26	18	12	38	CLAYEY SAND with GRAVEL SC		Yes	No	Yes	No

Layer: ORIGINAL EMBANKMENT FILL

BORING	SAMPLE	SAMPLE	NATURAL	LIQUID	PLASTIC	PLASTIC	GRAVEL	SAND	SILT	CLAY	CLAY	SILT/CLAY	USCS
NUMBER	NUMBER	DEPTH	MOISTURE	LIMIT	LIMIT	INDEX				.005 mm	.002 mm		CLASSIFICATION
			CONTENT	%	%	%	%	%	%	%	%	%	
BAP-0903	S-2	3.25	24	48	24	24	0	8	60	45	32	92	LEAN CLAY CL
BAP-0903	S-5	7.75	20	36	20	16	0	14	58	38	28	86	LEAN CLAY CL
BAP-0905	S-3	4.75	17	32	18	14	0	25	53	30	23	76	LEAN CLAY with SAND CL
BAP-0905	S-5	7.75	22	48	24	24							
BAP-0907	S-5	7.75	23	49	26	23							
BAP-0907	S-6A	9.25	28	47	29	18	0	5	67	43	29	96	SILT ML

Fines Content	and Plasticity I	ndex Screening	
	% Passing	Is Soil Sample Liquefiable	
LL < 35	0.005 < 15	WC < 0.9LL	(meets all three criteria)
No	No	Yes	No
No	No	Yes	No
Yes	No	Yes	No
No	-	Yes	No
No	-	Yes	No
No	No	Yes	No

Appendix V – 2009 Investigation Report Text

August 4, 2009 011-11497-013

Mr. Pedro Amaya, P.E. American Electric Power 1 Riverside Plaza Columbus, OH 43215

Re: Subsurface Investigation and Analysis Bottom Ash Pond Embankments AEP Cardinal Plant Brilliant, Ohio

Dear Mr. Amaya:

In accordance with our proposal dated March 23, 2009, and our signed contract dated March 25, 2009, BBC&M Engineering, Inc. (BBCM) has completed a geotechnical assessment of the embankment separating the Bottom Ash Complex from the Ohio River at the Cardinal Generating Plant in Brilliant, Ohio.

BBCM's scope of work, as developed by AEP, consisted of obtaining subsurface data at a total of four cross-sections through the bottom ash pond an recirculation pond embankments, and performing seepage and slope stability analyses to provide an indication as to the level of safety provided by the embankments. The following report is a summary of our investigation.

We appreciate having been given the opportunity to be of service on this project. If you have any questions, please do not hesitate to contact this office.

Respectfully submitted,

BBC&M ENGINEERING, INC. Columbus, Ohio

01

Michael T. Romanello, E.I. Staff Engineer

Michael G. Rowland, P.E. Senior Engineer

Submitted: 4 bound copies 1 electronic copy on CDROM Cardinal Generating Plant Bottom Ash Pond Investigation

Brilliant, Ohio

Report to

American Electric Power Service Corp. Columbus, Ohio

Prepared by

BBCM Engineering, Inc. Dublin, Ohio

August, 2009

INTRODUCTION	1
SCOPE OF WORK	1
REVIEW OF HISTORICAL PLANS	1
GEOLOGY	2
FIELD WORK Site Reconnaissance Soil Borings Undisturbed Soil Samples Borehole Backfilling and Observation Wells Decording of Field Data	2 2 3 3
LABORATORY TESTING	3 4 5
GENERAL SUBSURFACE CONDITIONS Stratigraphy Groundwater	5 7
SEEPAGE AND STABILITY ANALYSIS Methodology Cross Sections Seepage Analysis Hydraulic Properties Hydraulic Boundary Conditions Finite Element Discretization and Mesh Seepage Analysis Models and General Results Stability Analyses Shear Strength Parameters Analysis and Results	7 9 9 9 .10 .10 .10 .11 .11 .11
CONCLUSIONS	.13
REFERENCES	.13

TABLE OF CONTENTS

LIST OF APPENDICES

APPENDIX A

Vicinity Map	Plate 1
Plan of Borings	Plate 2
Subsurface Cross Sections	Plate 3
Symbols and Terms Used on Boring Logs	Plate 4
Boring Logs	Plates 5 through 22
Observation Well Logs	Plate 23 through 25

APPENDIX B

Summary of Laboratory Test Results	Plates 1 through 4
Atterberg Limits Results by Layer	Plates 5 through 9
Gradation Curves	Plates 10 through 66
Laboratory Logs of Shelby Tubes	Plates 67 & 68
3-Point Consolidated-Undrained Triaxial Shear Test Results	Plates 69 & 70
Flex Wall Permeability Test Results	Plate 71

APPENDIX C

Historical Cross-Sections	Plates 1 & 2
Index Testing Statistical Summary by Layer	Plates 3 through 6
Slope Stability Shear Strength and Permeability Parameter Justification	Plates 7 through 32
Seismic Hazard Map	Plate 33

APPENDIX D

Seepage Model Hydraulic Boundary Conditions	Plate 1
Section A Seepage and Stability Analysis Graphical Output	Plates 2 through 7
Section B Seepage and Stability Analysis Graphical Output	Plates 8 through 13

INTRODUCTION

The Cardinal Generating Plant is located along the Ohio river between Brilliant, Ohio and Tiltonsville, Ohio, as shown on the Vicinity Map, included as Plate 1 of Appendix A. The Bottom Ash Pond Complex is located along the west bank of the river just to the south of the main plant area. The Bottom Ash Complex consists of two components: the Bottom Ash Pond and the Recirculation Pond. The Bottom Ash Pond is located north of the Recirculation Pond and they are separated by an earthen embankment. The crest elevation for all of the embankments is approximately the same, but vary in Elevation from 668.6' to 669.4' at the surveyed cross sections. The total length of the exterior embankment along the Ohio River is approximately 2,000 feet. For comparison, the normal pool for this stretch of the Ohio River is El. 644. Both ponds are isolated from exterior surface water inflow.

SCOPE OF WORK

The purpose of this Geotechnical Assessment was to provide an indication as to the level of safety provided by the dam separating the ponds from the Ohio River. The work which was performed as part of the limited subsurface investigation consisted of 1) review of the original plans; 2) the performance of two soil borings each at four different locations (one at the crest and one at the toe); 3) conversion of four soil borings into observation wells; 4) the completion of laboratory testing on the recovered samples; and, 5) engineering analyses of the existing embankments with consideration to seepage, steady-state slope stability and seismic slope stability.

REVIEW OF HISTORICAL PLANS

The Site Development Plan for the Ash Storage Area and the corresponding Sections Plan (drawings numbers 3-3017-5 and 3-3027-3, respectively) from the ash pond vertical expansion in the 1970s were made available for review. The plans were developed in 1973 and include 'Record Drawing' information through 1978. The ash pond complex is believed to have been originally constructed in the 1960s when the plant was first brought online. BBCM also received an electronic drawing file of the plant, including topographic data, as depicted in the Plan of Borings presented as Plate 2 in Appendix A. The aerial survey used to develop the drawing file was performed in 1994.

Based on the historical cross-sections extending through both the Bottom Ash Pond and the Recirculation Pond from the vertical expansion, the original ash pond embankments along the Ohio River ranged in height from 4 to 6 feet above the bottom of the ash pond. Historical Sections 'A-A' and 'C-C' detail the vertical expansion plans for the embankment which was assessed during this investigation. These cross-sections are presented as Plates 1 and 2 of Appendix C. Based on the sections, the original embankment was raised by approximately 10 to 12 feet by constructing an earthen embankment on the inboard slope of the original embankments. The construction was intended to raise the crest from an approximate elevation of 658.0 feet to Elevation 670.0 feet. The approximate boundary of the original ash pond embankment is depicted on the historical cross-sections as well as the seepage and stability analysis graphic output.

GEOLOGY

The natural soils at the site generally consist of a layer of alluvium silt, clay and fine sand over glacial outwash deposits of variable thickness overlying the bedrock surface. The alluvium clays and silts were deposited in the backwater of the Ohio River, while the outwash materials typically consist of sand, gravel and silt deposits deposited during the last ice age. Based on geological literature, the glacial outwash extends to the bedrock surface, estimated to be roughly 60 feet below the natural ground surface at the pond. The upper most bedrock most likely consists of shale and/or sandstone belonging to the Conemaugh Group of Pennsylvanian Age.

FIELD WORK

Site Reconnaissance

On March 20, 2009, a Senior Engineer and a Project Engineer from our office performed a Dam and Dike Condition Survey and results were presented in the 2009 Inspection Report for the Ash Impoundment. During the condition survey, the locations of the critical cross sections determined by AEP were observed, and the proposed borings were staked in these areas. Additional information concerning the visual condition of the dam may be found in this report.

Soil Borings

During the period of April 6 through April 10, 2009, BBCM was on site and performed a total of seven (7) soil borings, designated CD-BAP-0901 through CD-BAP-0907, that were extended to depths ranging from 30.0 to 60.5 feet below existing grade. A 'PZ' designation was added to Borings CD-PZ-BAP-0902, 0904, and 0905 to indicate an observation well was installed within the borehole. For simplicity throughout this report, the borings are typically referred to with the 'BAP' (Bottom Ash Pond) designation only. Borings BAP-0901, 0902, 0904 and 0906 were located at the crest of the pond embankments and Borings BAP-0903, 0905, and 0907 were located at the outboard toe of the embankment slopes, and were placed to correspond with the crest borings. The boring location areas were selected by AEP and field located by BBCM. The boring locations are shown on the 'Plan of Borings' presented on a full size drawing as Plate 2 in Appendix A. All boring locations and elevations, as well as additional ground surface points near the borings were surveyed by AEP personnel to create surface profiles.

All borings were performed with either a truck-mounted drill rig or an all-terrain-vehicle (ATV) mounted drill rig and were advanced between sampling attempts using 3¹/₄-inch or 4¹/₄-inch I.D. hollow-stem augers. Disturbed, but representative samples were obtained by lowering a 2-inch O.D. split-barrel sampler to the bottom of the hole and driving it into the soil by blows from a 140-pound automatic hammer freely falling 30 inches (Standard Penetration Test, ASTM D1586). The automatic hammer used to advance the SPT sampler had previously been calibrated for energy transmission using dynamic pile monitoring methods. The energy calibration factor is included on the boring logs. SPT sampling was performed continuously through the embankment fill and at 2¹/₂-foot intervals once the native soil was encountered. Split barrel samples were examined immediately after recovery and representative portions of each sample were placed in air tight jars and retained for subsequent laboratory testing.

Undisturbed Soil Samples

In addition to the disturbed samples, thin-walled press tube samples ("Shelby" tubes) were also attempted at various depths in order to obtain relatively undisturbed soil samples for strength testing. The samples were collected by hydraulically pressing a 3-inch diameter thin-walled steel (Shelby) tube at the end of the drill rod stem into the soil at a uniform rate. The samples were preserved inside the Shelby tube sampler and sealed with wax. The sample collection was completed in accordance with ASTM D 1587 Method for Thin-Walled Tube Geotechnical Sampling of Soils. Two Shelby tube samples were obtained in Boring BAP-0901 and one Shelby tube sample was obtained in each of borings BAP-0903 and BAP-0906. It should be noted that several other attempts were made to obtain additional undisturbed samples but resulted in crushing the tube or no recovery.

Borehole Backfilling and Observation Wells

During and at the completion of drilling, groundwater readings were measured and recorded in each boring. In Borings CD-PZ-BAP-0902, 0904, and 0905, wells were installed to permit future groundwater readings. The wells consist of 2-inch diameter PVC, well casings and screens. Screens are nominal 10-foot lengths with 10-slotted openings. Quartz sand was used as a filter (where the surrounding soil does not consist of sand and gravel) and was placed to a level approximately 2 feet above the top of the well screen. A well seal consisting of approximately 2 feet of granular bentonite (3/8-inch hole plug) was set above the filter pack and the remainder of the annular space was filled with a bentonite slurry (benseal). A lockable steel cover was installed over the well and a 3 foot by 3 foot concrete pad was constructed to protect the exposed portion of the well which extends above the ground surface. Three to four steel bollards were installed around each concrete pad to protect the well.

During the installation of the wells, a surge block was used to densify the sand pack. Upon completion, each well was developed. Well development includes an attempt to hand bail 10 well volumes of groundwater from each well. Well Completion Diagrams are presented as Plates 23 though 25 of Appendix A. BBCM understands that all follow up groundwater level measurements will be obtained by AEP personnel. It is also understood that AEP will formally survey in the top of pipe for the three wells.

Recording of Field Data

In the field, the following procedures and specific duties were performed by a Staff Engineer or a Field Geologist from our office:

- examined all samples recovered from the borings;
- cleaned soil samples of cuttings and preserved representative portions in airtight glass jars;
- made seepage observations and measured the water levels in the borings;
- prepared a log of each boring;
- made hand-penetrometer measurements in soil samples exhibiting cohesion; and,
- provided liaison between the field personnel and the Project Manager so that the field investigation could be modified in the event that unexpected subsurface conditions were encountered.

At the completion of drilling, all samples were transported to the BBCM laboratory for further examination and testing.

LABORATORY TESTING

Index Testing

Laboratory testing was performed on selected representative soil samples obtained during the field investigations to determine natural moisture content (ASTM D2216), liquid and plastic limits (BBCM adjustment to ASTM D4318), and grain size analyses (ASTM D422). The results of these and other tests permit an evaluation of the strength, compressibility and permeability characteristics of the soils encountered at this site.

The results of the moisture content testing and of the liquid and plastic limits are graphically displayed on the individual boring logs presented in Appendix A. The results of all grain size analyses are also displayed graphically and presented as Plates 10 through 66 in Appendix B. All laboratory test results and a summary of laboratory test results are presented in Appendix B.

Table 1 summarizes the results of the index testing for the each layer except for the glacial outwash sand and gravel, where only a limited number of index testing was performed. For a comprehensive summary of all index testing performed, see Plates 3 through 7 of Appendix C.

Table 1.	Summary	∕ of index	values
----------	---------	------------	--------

Statistic	MC	LL	PL	PI	CF
Sample Size	16	12	12	12	8
Minimum	10	25	16	9	8
Maximum	31	37	24	18	21
Mean	16.3	30.3	18.3	12.1	12.1
Median	15	29	17	11	11
Mode	16	27	17	10	12
Standard Deviation	5.4	4.5	2.3	3.2	4.6

Original Embankment Fill

Statistic	MC	LL	PL	PI	CF
Sample Size	10	6	6	6	4
Minimum	15	32	18	14	23
Maximum	33	49	29	24	32
Mean	22.5	43.3	23.5	19.8	28.0
Median	22	48	24	21	29
Mode	22	48	24	24	N/A
Standard Deviation	5.1	7.4	4.0	4.4	3.7

Alluvium Silt and Clay

Statistic	MC	LL	PL	PI	CF
Sample Size	10	4	4	4	10
Minimum	22	34	21	7	3
Maximum	38	38	28	15	28
Mean	29.0	36.0	23.5	12.5	11.0
Median	29	36	23	14	7
Mode	26	N/A	N/A	15	5
Standard Deviation	5.4	1.8	3.1	3.8	8.5

Organic Clayey Silt

Statistic	MC	LL	PL	PI	CF
Sample Size	22	18	18	18	21
Minimum	28	30	22	3	5
Maximum	54	50	38	20	44
Mean	41.8	40.2	27.1	13.2	18.9
Median	43	41	27	15	17
Mode	43	45	24	16	16
Standard Deviation	5.2	5.4	3.7	4.7	7.4

MC = Moisture Content; LL = Liquid Limit; PL = Plastic Limit; PI = Plasticity Index; CF = Clay-sized Fraction (% finer than 0.002 mm)

Specialty Testing

In addition to the above index tests, a three-point isotropically consolidated-undrained (CU) triaxial shear test (ASTM D4767) and a flex wall permeability test was performed on undisturbed soil samples obtained from Shelby Tube sampling. Results of all laboratory testing are included in Appendix B. Difficulties were encountered in obtaining undisturbed samples within the newer embankment fill due to the granular nature of the material. The CU triaxial test and permeability test were performed on undisturbed samples obtained within the alluvium and original embankment fill layers, respectively.

GENERAL SUBSURFACE CONDITIONS

Stratigraphy

Based on the descriptions of the samples recovered in the borings and laboratory testing, the subsurface stratigraphy for each section can generally be described in descending order from the top of the embankment as follows:

 The four borings which were performed from the crest of the embankments encountered 1.0 to 3.0 feet of roadway base consisting of bottom ash/boiler slab at the ground surface overlying 18.0 to 22.0 feet of embankment fill consisting of very stiff to hard silty clay and medium-dense to dense fine to coarse sand and gravel. Hand penetrometer measurements on samples exhibiting cohesion within this layer ranged from 2.5 to 4.5+ tons per square foot (tsf), while SPT N-values (corrected for 60% energy) ranged from 6 to 50 with an average of 26. Index testing results, including liquid limit and plasticity index of samples tested within this stratum are summarized in Table 1 of the previous section. The material was predominantly classified as Lean Clay (CL) to Clayey Gravel with Sand (GC) under the Unified Soil Classification System. Boring CD-PZ-BAP-0901 encountered a 4.5 foot thick zone of very-soft to very-stiff silty clay at the bottom of the fill. Hand penetrometer measurements within this zone ranged from 0.0 to 2.25 tsf.

- The three borings which were performed from the outboard toe of the embankments encountered 8.5 to 11.5 feet of embankment fill consisting of very-stiff to hard brown mottled with gray silty clay. The fill encountered in these borings is believed to be associated with the original pond embankments, and is denoted throughout this report as the 'Original Embankment Fill'. Hand penetrometer measurements on samples within this layer ranged from 1.6 to 4.5+ tons per square foot (tsf), while SPT N-values (corrected for 60% energy) ranged from 11 to 48 with an average of 22. Index testing results, including liquid limit and plasticity index of samples tested within this stratum are summarized in Table 1 of the previous section. The material was predominantly classified as Lean Clay (CL) under the Unified Soil Classification System.
- Underlying the embankments, the borings encountered 4.5 to 10.5 feet of alluvium consisting of very-loose to loose silt with few zones of stiff to hard silty clay and thin seams of very loose to loose fine to coarse sand. Hand penetrometer measurements on samples exhibiting cohesion within this layer ranged from 1.6 to 4.5+ tons per square foot (tsf), while SPT N-values (corrected for 60% energy) ranged from 0 to 33, with an average of 8. Index testing results, including liquid limit and plasticity index of samples tested within this stratum are summarized in Table 1 of the previous section.
- Beneath the alluvium silt and clay, the borings encountered 3.5 to 14.5 feet of very-soft to stiff organic clayey silt. Hand penetrometer measurements on samples exhibiting cohesion within this layer ranged from 0.0 to 1.25 tons per square foot (tsf), while SPT N-values (corrected for 60% energy) ranged from 0 to 20, with an average of 5. Index testing results, including liquid limit and plasticity index of samples tested within this stratum are summarized in Table 1 of the previous section. Loss on Ignition (LOI) values ranged from 7.9 to 10.4%. The material is predominantly classified as organic clay with sand (OL) under the Unified Soil Classification System. Throughout the report, this layer was identified as a clayey silt based on its consistency even though the PI often indicated the material would be classified as a silty clay
- All borings were terminated after penetrating 7.0 to 30.0 into feet very-loose to loose fine to coarse sand and/or medium-dense to dense brown fine to coarse sand and gravel. SPT N₆₀-values in the very-loose to loose sand ranged from 4 to 29 bpf with an average of 12. SPT N₆₀-values in the medium-dense to dense sand and gravel ranged from 14 to 69 bpf with an average of 32. The percent passing the 200 sieve ranged between 6 and 24, with an average of 12.2.

The newer embankment fill consisted of silty clay, sand, and gravel and was considered as a uniform stratum although the main descriptor varied based on the small variations in the percent by weight of each material. Strength parameters associated with this layer are discussed in the **Seepage and Stability Analysis** section. For a more detailed description of the stratigraphy, including the presence of minor variations and inclusions, the logs of the individual borings should be examined in conjunction with the summary above.

Groundwater

Groundwater observations were made as each boring was being advanced and measurements were made at the completion of drilling. The groundwater observations are graphically displayed on the boring logs and also noted at the bottom of the log. All water level readings indicated on the borings logs are referenced from the ground surface, as the top of pipes have not yet been formally surveyed. Extended groundwater measurements were made in the observation wells while on site and are summarized in Table 2.

	Elevation During	Elevation at	Elevation on	Elevation on
Boring	Drilling	Completion	4-7/8-09	4-10-09
CD-BAP-0901	635.2	654.9		-
CD-PZ-BAP-0902	655.0	657.3	657.3	659.6
CD-BAP-0903	627.6	633.6		-
CD-PZ-BAP-0904	652.1	652.1		652.2
CD-PZ-BAP-0905	632.1	642.1	642.1	644.7
CD-BAP-0906	648.6	658.3		-
CD-BAP-0907	627.3	634.0		-

Table 2.	Extended	Groundwater	Measurements
Table Z.	LAIGHUGU	Olounuwaler	พอสงนเอเมอเมอ.

Elevation Datum: NAD 27 / NGVD 29

SEEPAGE AND STABILITY ANALYSIS

Embankment dams must exhibit adequate factors of safety against a slope stability failure for static and seismic conditions. As part of this project, BBCM considered four areas of the ash pond embankment along the river as deemed critical by AEP to analyze for stability. Each section was developed by performing one boring through the crest of the embankment and one boring at the outboard toe, with the exception of the southernmost section through the recirculation pond embankment, where the location of the proposed boring at the toe was inaccessible. The following sections of this report discuss the analyses that were performed, explain the rational supporting parameter selection and present the results.

Based on visual observations, the Recirculation Pond embankments appeared to be in 'Fair' condition while the Bottom Ash Pond appeared to be in "Good' Condition. The principal item which came out of this inspection relative to this report is that no evidence of slope failure or seepage was observed on the embankment slope between the pond and the river. It should be noted however, that the toe of the slope is inundated by the ordinary high water level of the Ohio River. The 2009 Inspection Report should be consulted for the complete assessment of the visual observations made for the Bottom Ash Complex.

Methodology

The seepage and stability analyses were performed with the aid of the computer program Slide (Version 5.0) developed by Rocscience, Inc. The program performs 2-D limit equilibrium slope stability analyses and steady-state unsaturated seepage analysis; the latter using the finite element method. Pore pressure values produced from the seepage analysis are used in the slope stability computations for each model.

Static and seismic slope stability analyses were performed on the outboard embankment slopes for Cross-Sections B and D using Spencer's method (Spencer, 1973) with a deterministic approach. Both methods provide solutions for given cross sections based on limit equilibrium theory. The five critical slip surfaces corresponding to the lowest factor-of-safety are shown in the graphical output. Seismic slope stability analyses were performed based on a pseudo-static slope stability approach. Stability calculations were performed in general accordance with the US Army Corps of Engineer's Engineering Manual 1110-2-1902 entitled *Slope Stability*.

Cross Sections

Cross-sections showing the general subsurface conditions encountered in the borings were developed based on the survey data provided by AEP. Table 3 summarizes the borings used to develop the four cross sections, which are shown individually on the Subsurface Cross Sections shown on a full size plan sheet as Plate 3 of Appendix A. Two cross-sections were chosen to carry out the seepage and stability analysis, and are considered representative of the cross-sections not used. It should be noted that no bathymetric data was available. As such, the portion of the slope located below the Ohio River normal pool was estimated. If bathymetric information becomes available in the future, it is recommended that the analysis cross-sections be reviewed.

Cross-Section	Location	Crest Boring	Toe Boring
Section A	Recirculation Pond	CD-BAP-0901	-
Section B	Recirculation Pond	CD-PZ-BAP-0902	CD-BAP-0903
Section C	Bottom Ash Pond	CD-PZ-BAP-0904	CD-PZ-BAP-0905
Section D	Bottom Ash Pond	CD-BAP-0906	CD-BAP-0907

Table 3: Cross Section Data

Although four separate cross-sections were examined, the parameters selected to represent the permeability and strength of both the original and newer embankment fill layers were kept the same between sections. Although there are minor differences when comparing the two layers between borings, it is believed that there is insufficient evidence to support delineating the parameters from section to section. Therefore, for the purposes of the seepage and slope stability analyses, the permeability and shear strength parameters used to represent the fill layers were based on the totality of test data available for the embankment across the entire site.

The natural alluvium soils underlying the pond embankments are somewhat variable, consistent with the depositional environment of such soils. As with the embankment fill, it is difficult to justify developing specific parameters for an individual cross-section, as the properties of this stratum may vary over short distances. As such, the parameters used to represent the alluvium, and similarly the organic clayey silt and glacial outwash layers, were based on the totality of test data available for these layers across the entire site.

At the time of the survey performed March 27, 2009, the pool levels in the recirculation pond and bottom ash pond were at EL. 663.1, and EL. 664.4, respectively. The resulting freeboard from the surveyed pool levels range from 4.3 - 5.1 feet and 5.6 - 5.8 feet for the recirculation and bottom ash ponds, respectively. It is understood that these levels represent the approximate normal operating pool level. The pool level in the Ohio River was recorded as Elevation 644.4 feet. The ordinary high water level of the river is believed to be EL. 644 at the site.

Seepage Analysis

The location of the groundwater table within the embankments was estimated based on extended groundwater readings taken from the observations wells and conditions encountered during drilling. Groundwater conditions used in the finite element model were then calibrated to match the observed conditions. Results from the seepage analysis provided pore pressure values within the model to be used in the Stability Analysis.

Hydraulic Properties

As previously indicated, the same modeled permeability values for the various soil layers were taken for both cross-sections based on the totality of information available for the site. A flex wall permeability test was performed on an undisturbed sample obtained within the original embankment fill layer yielding a vertical permeability of 7.4×10^{-8} cm/sec. The design value for permeability was increased to 5×10^{-7} cm/sec as a result of the calibration of the seepage models. Permeability values for the other strata were estimated from typical published values based on material description or correlations to grain size. Permeability values and anisotropic ratios were then adjusted during the seepage analysis to best match the observed groundwater conditions. Supporting calculations for the development of the permeability values are included in the *Slope Stability Shear Strength and Permeability Parameter Justification* section of Appendix C.

Permeability values assigned to the model layers are shown in the table below. Several layers were modeled with anisotropic permeability functions. The horizontal permeability (k_h) of the original embankment fill soils were estimated as 10 times the vertical permeability (h_v), to best model the stratification of the soil as a result of compacting the fill in horizontal lifts (Casagrande, 1937), but was adjusted to a ratio of 5 times during the analysis. Similarly, a k_h/k_v ratio of 2 was used for the newer embankment fill soils. The alluvium and organic clayey silt foundation layer were modeled with a horizontal permeability twice the vertical permeability to simulate the natural stratification and inclusion of fine sand seams. The remaining soil layers were defined as a granular material and were assigned isotropic permeability functions.

Matarial Description	Permeability		Reference	
Material Description	k _v (cm/sec)	k _h / k _v	Relefence	
Newer Embankment Fill	1x10 ⁻⁵	2	Grain Size Correlation	
Original Embankment Fill	5x10⁻ ⁷	5	Permeability Test	
Alluvium Silt and Clay	1x10 ⁻⁵	2	Typical Published Values	
Organic Clayey Silt	5x10 ⁻⁶	2	Typical Published Values	
Loose to Med Dense Glacial Outwash Sand and Gravel	1x10 ⁻²	1	Grain Size Correlation	
Med Dense - Dense Glacial Outwash Sand and Gravel	1x10 ⁻³	1	Grain Size Correlation	

Table 4: Permeability	Values
-----------------------	--------

Hydraulic Boundary Conditions

Topographic contours from the most recent survey as well as from historical construction drawings were used to expand the surface profile created from the AEP survey in order to develop a full scale model. The following boundary conditions were assigned to the finite element based models.

- A 'Constant Head' boundaries of 663.0 and 664.5' were used to represent the level of water in the recirculation pond and ash pond, respectively.
- The model was extended on the downstream side to the approximate middle of the Ohio River, and a 'Constant Head' boundary of 644.4' was used to represent the normal flow level of the river at this point (water level recorded by AEP).
- A 'No-Flow' boundary was placed on the upstream end of the model, as flow should become predominantly downward near the middle of the pond.
- A 'No-Flow' boundary was placed on the bottom of the model at Elevation 550' representing the approximate bedrock surface, which is assumed impermeable for this analysis.
- 'Unknown' boundary conditions were set on the remainder of the model to allow the program freedom to calculate values at these locations. These locations include the downstream slope face and the downstream ground surface.
- For Section D, the Constant Head Boundary of 644.4' was extended up the downstream slope to the location of the toe boring in an effort to model the observed groundwater conditions within the original embankment fill.

Finite Element Discretization and Mesh

The following steps were performed during the development of the seepage model:

- 6 Noded Triangles were used to generate the finite element mesh for the models (see Plates 2 and 7 of Appendix D).
- The density of nodes was manually increased to minimize the number of 'Poor Quality Elements' based on the Mesh Quality function available in Slide.
- Poor quality elements were defined as elements with one of the following characteristics:
 - 1. Maximum side length to minimum side length ratio greater than 10.
 - 2. Minimum interior angle less than 20 degrees.
 - 3. Maximum interior angle greater than 120 degrees.
- Prior to final computational runs, a sensitivity analysis was performed to determine if an adequate number of total finite element nodes were used in the analysis.
- A sensitivity analysis was performed on the tolerance of the computational iteration.

Seepage Analysis Models and General Results

Graphical output from the seepage analyses for Sections B and D are presented in Appendix D as Plates 3 and 4 for Section and B and Plates 8 and 9 for Section D. The calibrated seepage models produced phreatic surface shapes close to what was expected based on the water levels measured in the observation wells.

Although a typical phreatic surface extending from the ash pond level to the Ohio River was generated, much of the seepage emanating from the ponds is moving downward through the newer embankment fill and thin stratum of alluvium soils and into the glacial outwash sand and gravel stratum.

Stability Analyses

Shear Strength Parameters

In order to perform slope stability analyses, it was necessary to estimate appropriate parameters to represent the existing soils. The shear strength and unit weight values used for the slope stability analyses were based on a combination of the laboratory index test results, triaxial shear tests, published values and judgment, and are intended to be representative of long-term conditions. Table 5 lists the strength parameters used in both static and seismic analyses for each stratum. Supporting calculations for the development of these strength values are presented in the *Slope Stability Shear Strength Parameter Justification* section of Appendix C.

The percent of organic content in the Organic Clayey Silt layer was determined by performing Loss on Ignition (LOI) tests; results ranged from 7.9 to 10.4 percent. For LOI-values of less than 20 percent, the soil properties are controlled by the non-organic portion of the soil (FHWA, 2002).

Matarial Description	γ _{wet} Strength		ength	Peference	
	(pcf)	φ'	c' (psf)	Relefence	
Newer Embankment Fill	125	31°	0	SPT and Index Testing Correlations	
Original Embankment Fill	125	30°	100	Index Testing Correlations	
Alluvium Silt and Clay	125	30°	0	Index Testing Correlations	
Organic Clayey Silt	125	30°	0	Index Testing Correlations and CU Triaxial Test (BBCM 2009)	
Very Loose to Loose Glacial Outwash Sand and Gravel	115	29°	0	SPT and Grain Size Correlations	
Medium Dense Glacial Outwash Sand and Gravel	120	34°	0	SPT and Grain Size Correlations	

Table 5: Strength Values for Static Conditions

In addition to the static steady-state stability analyses, strength parameters were developed for use with the pseudo-static seismic analyses. With respect to seismic loading, it is believed that the newer embankment fill soil is sufficiently granular that drained strengths values will be exhibited during seismic loading. However, as the original embankment fill is more cohesive in nature, it will likely exhibit an undrained response. As the embankment fill has come to equilibrium under the present steady-state seepage conditions, the shear strength envelope used in the analysis was based on the "R" test, as recommended in the Army Corps of Engineer's Manual 1110-2-1906 "Laboratory Soils Testing," and suggested by Duncan and Wright in their 2005 publication. This is essentially the slope and y intercept of the CU strength envelope. Unfortunately, CU triaxial tests were not performed in the newer embankment fill layer as all Shelby tubes attempted in this layer failed to recover an adequate sample size (however, a permeability test was performed). The seismic strength values for the newer embankment fill layer has been estimated based on values given by Duncan and Wright (2005) for soils with similar index properties (See Plate 16 of Appendix D). CU Triaxial test data was available for the Organic Clavey Silt laver, and the corresponding R envelope was used to model the shear strength. As there is a significant amount of sand within the alluvium strata, drained strength values were used for seismic loading.

Table 6: Strength Values for Seismic Conditions

Material Description	Ywet	Strength		Deference
	(pcf)	φ	c (psf)	Reference
Newer Embankment Fill	125	31°	0	SPT and Index Testing Correlations
Original Embankment Fill	125	22°	50	Duncan and Wright (2005)
Alluvium Silt and Clay	125	30°	0	Index Testing Correlations
Organic Clayey Silt	125	24°	180	CU Triaxial Test (BBCM 2009)
Very Loose to Loose Glacial Outwash Sand and Gravel	115	29°	0	SPT and Grain Size Correlations
Medium Dense Glacial Outwash Sand and Gravel	120	34°	0	SPT and Grain Size Correlations

Analysis and Results

Static and seismic analyses were performed on Sections B and D to determine the factor of safety against rotational failure for the outboard slopes using drained soil strength parameters. The graphical computer outputs for these analyses have been included with this report in Appendix D.

Seismic analyses were performed using a pseudo-static analysis with a horizontal seismic coefficient of 0.06g. This coefficient was determined from the 2008 USGS National Seismic Hazard Maps for the "Peak Acceleration (%g) with 2% Probability of Exceedance in 50 Years". This chart is provided as Plate 33 of Appendix C.

Graphical results of the slope stability analysis for static and seismic conditions are shown in Appendix D. Table 7 summarizes the lowest factors of safety determined for each analysis case.

Analysis Case	Required Minimum Factor of Safety	Computed FS	
		Section B	Section D
Static (Steady-State Seepage)	1.50	1.57	1.52
Pseudo-Static	1.00	1.05	1.09

The critical failure surfaces were located through a deterministic search, with no limitations on failure depth. The failure surface locations were restricted to find only surfaces associated with a global failure through the composite embankment (original plus newer embankment fill) or through the original embankment only. Shallow sloughing failures along the river bank were not considered for this analysis. The results are based on the pool level recorded at the time of the survey, extrapolated bathymetric data, and the groundwater measurements recorded from the observation wells.

CONCLUSIONS

As part of this report, BBCM examined the stability of the outboard embankment slopes at 4 locations under steady-state seepage and seismic loading conditions using the results of 7 soil borings. The analyses suggest that at the four cross sections examined, the embankments exhibit adequate factors of safety relative to those recommended by the US Army Corps of Engineers (COE).

REFERENCES

United States Society on Dams (USSD). *Strength of Materials for Embankment Dams*. February, 2007.

U.S. Army Corps of Engineers. *Slope Stability*: Engineering Manual 1110-2-1902. October, 2003.

U.S. Army Corps of Engineers. *Laboratory Soils Testing*: Engineering Manual 1110-2-1906. August, 1986.

Casagrande, A. "Seepage Through Dams." *Journal of New England Water Works Association*, 1937, LI, 2, pp. 295-336.

Naval Facilities Engineering Command (NAVFAC) (2005), "Geotechnical Engineering Procedures for Foundation Design of Buildings and Structures", Unified Facilities Criteria (UFC) 3-220-01N.

Federal Highway Administration. <u>Geotechnical Engineering Circular No. 5: Evaluation of Soil</u> and Rock Properties. Report No. FHWA-IF-02-034, April, 2002.

United States Geological Survey (USGS) Earthquake Hazards Program. Preliminary National Seismic Hazards Maps – Accessed April 2008. http://earthquake.usgs.gov/research/hazmaps/products_data/2008/

Stark, T.D., Choi, H. and McCone, S. "Drained Shear Strength Parameters for Analysis of Landslides." Journal of Geotechnical Engineering, ASCE, Vol. 131, No. 5, pp. 575-588.

Hall, G.A. "The Development of Design Criteria for Soil Slopes on West Virginia Highways." Dissertation, West Virginia University, 1974, Ch. VII.
Appendix VI – Excerpt from 2010 Follow-Up Investigation Report

INTRODUCTION

BBCM previously performed a limited subsurface investigation and slope stability analyses of the Cardinal Bottom Ash Pond Complex, the report of which was dated August 4, 2009. This report consisted of obtaining subsurface data at a total of four cross-sections through the bottom ash pond and recirculation pond embankments, and performing seepage and slope stability analyses to provide an indication as to the level of safety provided by the embankments.

The purpose of this follow-up work was to supplement the analyses performed as part of the original work in an attempt to fulfill the AEP action plan requirements in response to the USEPA inspection report. The follow-up slope stability analyses are solely based on existing subsurface data, as no additional field or laboratory work was performed as part of this project. Also as part of this follow-up work, hydraulic and hydrologic (H&H) analyses were performed to determine the capacity and freeboard of the Bottom Ash Pond related to current requirements. A summary of the work performed is contained in this report. This report should be considered an addendum to our August 4, 2009 Bottom Ash Pond Complex report.

SLOPE STABILITY ANALYSIS

Follow-Up Embankment Stability Analysis

Additional slope stability analyses were performed on Sections B and D to determine the factor of safety against rotational failure for the following conditions:

- 1.) Inboard slopes under steady-state seepage conditions;
- 2.) Pseudo-static seismic analyses under steady-state seepage conditions for the inboard slopes;
- 3.) Surcharge pool conditions (outboard slopes); and,
- 4.) Rapid drawdown analyses for the inboard slope.

The previously developed cross-section (B and D) geometry, permeability values, and shear strength parameters were used in the follow-up analysis. Please refer to the '*Subsurface Investigation and Analysis – Bottom Ash Pond Embankments*' report by BBCM dated August, 2009 for a complete discussion of these parameters.

Seismic analyses for the inboard slopes were performed using a pseudo-static analysis with a horizontal seismic coefficient of 0.06g, consistent with the original report. The surcharge pool was modeled using a distributed line surcharge load, as it is not expected that the phreatic surface within the embankment will change during this temporary loading condition.

A rapid drawdown analysis was also completed for the bottom ash pond inboard embankment slopes utilizing the previously developed cross-sections. It is the understanding of BBCM that the ponds are typically filled with ash which would tend to support the inboard slopes. However, on an occasional basis, during times of ash removal and subsequent re-filling, a full pool of water could be established and a rapid drawdown scenario could occur if the pond were suddenly emptied. While not impossible, a large scale rapid drawdown event with unsupported interior slopes is unlikely. Notwithstanding, a rapid drawdown analysis was completed using the conventional method whereby the phreatic surface is positioned at the ground surface (inside the pond) and extended up into the slowly-draining embankment layers to the normal pool elevation. Drained strength parameters are used in this scenario. The drawdown level for the

analysis was considered to occur from the normal operating pool El. 664.4 down to the natural ground surface on the inboard side of the embankment. During the subsurface investigation it was determined that there are two types of fill present in the embankments, identified as *newer embankment fill* and *original embankment fill*. The *newer embankment fill* contains a high percentage of sand and gravel (58%), as determined from previous laboratory testing. While pockets of this layer are cohesive and will exhibit a slowly-draining response during a rapid drawdown event, the layer as a whole likely will not maintain a consistent phreatic surface on the inboard slope. As a result, the phreatic surface was modeled to maintain its elevated level only within the *original embankment fill* and not within the *newer embankment fill*. Please see the analysis of the *newer embankment fill* layer submitted in Appendix B.

Graphical results of the slope stability analysis for static and seismic conditions are shown in Appendix A. Table 1 summarizes the lowest factors of safety determined for each analysis case.

Analysis Case	Required Minimum Factor of Safety	Computed FS	
		Section B	Section D
Static (Steady-State Seepage) – Inboard Slope	1.50	1.70	1.65
Pseudo-Static – Inboard Slope	1.00	1.39	1.34
Maximum Surcharge Pool – Outboard Slope	1.40	1.55	1.52
Rapid Drawdown – Inboard Slope	1.30	1.55	1.52

Table 1: Stability Analysis Summary

The critical failure surfaces were located through a deterministic search, with no limitations on failure depth. The failure surface locations were restricted to find only surfaces associated with a global failure through the embankment. Shallow sloughing failures along the river bank were not considered for these analyses.

Liquefaction of Foundation Alluvium

A liquefaction screening analysis was performed for the soft alluvium soils underlying the embankments. There is concern that areas of this layer could potentially liquefy during seismic excitation and ultimately cause a failure of the embankments. The screening analysis was performed using the five techniques listed in the Federal Highway GEC No. 3:

- 1.) Geologic Age and Origin,
- 2.) Fines Content and Plasticity Index,
- 3.) Saturation,
- 4.) Depth Below Ground Surface, and
- 5.) Soil Penetration Resistance.

The five screening techniques are described in detail in the hand calculations provided in Appendix B. Due to the fines content and plasticity index, as well as the geologic age and origin, the screening analysis suggests that liquefaction will not occur for the alluvium silt and clay layer.